
PHY–387 K. Problem set #11. Due April 25, 2018.

1. An inertial frame of reference K ′ moves at velocity u relative to another inertial frame K.

A particle has velocity v
′ relative to K ′.

(a) As a warm-up exercise, show that the particle velocity vector relative to the K frame

is

v =

(

1 +
u · v′

c2

)−1(

u + v‖ +
1

γu
v
′
⊥

)

(1)

where v
′
‖ and v

′
⊥ are the components of the v

′ vector parallel and perpendicular to

the relative velocity u of the two frames.

Note: eq. (1) is not symmetric WRT v
′ ↔ u, unless the two velocity vectors happen

to be parallel to each other.

(b) Verify that eq. (1) is consistent with the speed of light universality. That is, show that

if the particle in question is a photon and |v′| = c, then also |v| = c, although the

directions of the v
′ and v vectors are generally different.

Now consider an accelerating particle and the relation between the acceleration vectors a′

and a relative to the frames K ′ and K. Please allow for completely general directions of

the vectors a′, v′, and u.

(c) Show that

a‖ =

(

1 −
u
2

c2

)3/2

(

1 +
u · v′

c2

)3
a
′
‖ , (2)

a⊥ =

(

1 −
u
2

c2

)

(

1 +
u · v′

c2

)3

[

a
′
⊥ +

u

c2
× (a′ × v

′)
]

, (3)

where a‖ and a⊥ are the components of the acceleration vector a respectively parallel

and perpendicular to the relative velocity u of the two frames, and ditto for the a
′
‖

and a
′
⊥ components of the a

′ acceleration vector.

1



2. In the rest frame of a moving conducting medium the current density obeys Ohm’s Law

J
′ = σE′ where σ is the conductivity and primes denote the rest-frame quantities.

(a) Write the Ohm’s Law for a moving conducting medium in a covariant form as

Jµ −
JνUν

c2
Uµ =

σ

c
F µνUν (4)

where Uµ is the 4–velocity of the medium,

Uµ =
dXµ

dτ
, U0 = γc, U i = γvi. (5)

(b) Spell out eq. (4) in 3D vector form.

(c) Suppose we are given the electric charge density ρ in the frame where the medium

moves. Show that the electric current density in that frame is (in Gauss units)

J = ρv + γσ

[

E +
v

c
×B −

v(v · E)

c2

]

. (6)

(d) Now suppose we know that the moving medium is electrically neutral in its rest frame,

ρ′ = 0. Show that in the frame where the medium moves

J = γσ
(

E +
v

c
×B

)

, ρ =
γσ

c2

(

v · E
)

. (7)

3. Finally, consider a point charge Q moving at a uniform velocity v; in the worldline terms,

x
µ
charge(τ) = Uµτ. (8)

Let’s measure the electric and magnetic fields of this charge at some spacetime point xµ.
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(a) Use the Lorentz covariant of the EM field tensor F µν — and only its covariance but no

specific EM equations — and the translational invariance of space and time to argue

that

F µν(x) = Q(XµUν −XνUµ)× f
(

(X · U), (X ·X)
)

(9)

where Xµ = xµ−x
µ
charge and f is some function of the Lorentz scalars (X ·U) = XλUλ

and (X ·X) = XλXλ.

Note: there is another Lorentz scalar at play, namely (U ·U) = UλUλ, but its value is

a constant (U · U) = c2,

The specific formula for the EM field tensor is

F µν(x) =
Q

c
×

(XµUν −XνUµ)
(

1
c2 (X · U)2 − (X ·X)

)3/2
. (10)

In this formula Xµ = xµ−x
µ
charge(τ), but the τ of the charge can affect the EM field tensor

at any given measurement point xµ. So for simplicity we may set τ = 0 and rewrite eq. (10)

as

F µν(x) =
Q

c
×

(xµUν − xνUµ)
(

1
c2 (x · U)2 − (x · x)

)3/2
. (11)

(b) Verify this statement.

(c) Show that for a charge at rest, eq. (10) yields the Coulomb electric field and zero

magnetic field.

(d) For a moving charge, spell out eq. (10) for the electric and magnetic fields in 3–vector

notations.
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