
POLARIZATION AND MAGNETIZATION

Neutral matter is made of atoms and molecules. The polar molecules have built-in

electric dipole moments p; normally, they are randomly oriented, but in presence of an

external electric field this randomness is biased in favor of p ↑↑ E, hence non-zero average

dipole moment vector 〈p〉. The non-polar molecules normally have p = 0, but an eternal

electric field induces a non-zero electric dipole moment by perturbing the electron’s quantum

states. One way or another, matter is chock-full of electric dipoles, and their macroscopic

effect stems from the dipole moment density

P =
net electric dipole moment

volume
(1)

called the polarization. For matter in a non-uniform electric field E(x) — or for a non-

uniform matter — the polarization P(x) varies from place to place on a macroscopic scale,

so it acts as a macroscopic field.

Likewise, many atoms and molecules have built-in magnetic dipole moments m, and in

presence of an external magnetic field B the directions of atomic dipoles are biased in favor of

m ↑↑ B, hence non-zero average magnetic moment vector 〈m〉. Also, the external magnetic

field can induce a magnetic moment in a molecule that otherwise would not have it. So one

way or the other, matter is full of magnetic dipole moments, and their macroscopic effect

stems from the magnetic moment density

M =
net magnetic dipole moment

volume
(2)

called the magnetization. And just like the electric polarization P(x), the magnetization

M(x) could be non-uniform and act as a macroscopic field.

Now consider the electric field E(x) generated by a given polarization P(y), or the

magnetic field B(x) generated by a given magnetization M(y). To be precise, let’s focus on

the macroscopic electric and magnetic field — that, the fields which would be measured by

macroscopic probes much larger than atoms — rather than microscopic fields which rapidly
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change from one place inside an atom or molecule to another place inside the same atom or

molecule. Technically, the macroscopic field are space averages of the microscopic fields,

Emacro(x) =

∫∫∫

Emicro(x+ δx) f(δx) d3δx,

Bmacro(x) =

∫∫∫

Bmicro(x+ δx) f(δx) d3δx,

(3)

for some measure f(δx) supported by a volume much larger than an atom but much smaller

than the probe we use to measure the electric or magnetic field. For example, we may use a

Gaussian measure

f(δx) =
1

π3/2a3
exp(−δx2/a2) (4)

for some constant length scale a, much larger than an atom but much smaller than a macro-

scopic probe. The macroscopic potentials Φ(x) and A(x) also obtain from averaging with

the same measure f(δx) as the macroscopic fields (3),

Φmacro(x) =

∫∫∫

Φmicro(x+ δx) f(δx) d3δx,

Amacro(x) =

∫∫∫

Amicro(x+ δx) f(δx) d3δx,

(5)

Now that I’ve reminded you about the macroscopic fields, let’s calculate the macroscopic

electric field E(x) generated by a given polarization P(y). The potential Φ(x) generated at

point x by a single electric dipole p located at some other point y is

Φ(x) =
p

4πǫ0
·

(

nxy

r2xy
=

(x− y)

|x− y|3

)

=
p

4πǫ0
· ∇x

(

−1

|x− y|

)

, (6)

hence the potential of a continuous density P(y) of dipole moments is

Φ(x) =
1

4πǫ0

∫∫∫

d3yP(y) · ∇x

(

−1

|x− y|

)

=
1

4πǫ0

∫∫∫

d3yP(y) · ∇y

(

+1

|x− y|

)

〈〈 integrating by parts 〉〉

= −
1

4πǫ0

∫∫∫

d3y
(∇ ·P)(y)

|x− y|
.

(7)

On the last line here, the electric potential Φ(x) looks exactly like the Coulomb potential of
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an effective charge density — called the bound charge density —

ρb(y) = −∇ ·P(y). (8)

Consequently, the macroscopic Gauss Law in presence of polarization P(x) becomes

ǫ0∇ · E(x) = ρb(x) = −∇ ·P(x), (9)

or if we allow for a macroscopic charge density ρ(x) in addition to the polarization P(x),

then

ǫ0∇ · E(x) = ρ(x) − ∇ ·P(x). (10)

Note: to integrate by parts in eq. (7) without a surface term, we must integrate over

the whole space, even if the polarization P(x) is limited to a finite piece of some dielectric.

Consequently, the bound charge ρb = −∇·P appears not only in the bulk of the dielectric but

also on its surface, where abrupt cessation of the polarization P produces a delta-function

term

ρb(x) ⊃ P(xjust inside) · n(x) δ(xnormal). (11)

In other words, at the surface of a dielectric we have a surface density of bound charges

σb = P(x) · n(x), (12)

for example

P
σb = +Pσb = −P

Anyway, in the macroscopic Gauss Law equation (10) one usually moves the ∇ ·P term
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to the left hand side: we define the electric displacement field as

D(x) = ǫ0E(x) + P(x), (13)

then it obeys

∇ ·D(x) = ρ(x) (14)

where ρ(x) is just the macroscopic charge density regardless of polarization.

Note that in presence of dielectrics, the key equations of macroscopic electrostatics —

the Gauss law and the zero-curl law — are obeyed by two different electric fields,

∇ ·D = ρ but ∇× E = 0. (15)

To relate the electric tension field E and the electric displacement field D to each other, we

need the equation of state of the dielectric in question. (Or if we are dealing with several

dielectric materials, we need the equation of state for each dielectric, including the trivial

D = ǫ0E for the vacuum). In many dielectrics the equation of state approximately linear,

D = ǫǫ0E (16)

where ǫ is the dielectric constant AKA the relative permittivity of the dielectric in question.

But some dielectrics are non-linear; also, the polarization P and hence the displacement D

may depend on the prior history of the electric field (hysteresis), on the pressure and the

temperature — which may be non-uniform, — etc., etc.; and that can make for much more

complicated electrostatic problems.

The macroscopic magnetic field B(x) of a given magnetization M(y) of some magnetic

material obtains in a rather similar way. The vector potential A at point x of a single
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magnetic moment m located at some other point y is

A(x) =
µ0m

4π
×

(

nxy

r2xy
=

(x− y)

|x− y|3

)

=
µ0m

4π
×∇x

(

−1

|x− y|

)

, (17)

hence the vector potential of a continuous density M(y) of magnetic moment is

A(x) =
µ0
4π

∫∫∫

d3yM(y)×∇x

(

−1

|x− y|

)

=
µ0
4π

∫∫∫

d3yM(y)×∇y

(

+1

|x− y|

)

〈〈 integrating by parts 〉〉

= −
µ0
4π

∫∫∫

M(y)×
←
∇y

|x− y|

= +
µ0
4π

∫∫∫

(∇×M)(y)

|x− y|
.

(18)

The last line here looks exactly like the vector potential of an effective current density —

called the bound current density —

Jb(y) = ∇×M(y), (19)

so the macroscopic Ampere Law becomes

∇×B(x) = µ0∇×M(x). (20)

Or if we have both the magnetization and some actual macroscopic electric currents J(x),

then

∇×B(x) = µ0∇×M(x) + µ0J(x). (21)

Just as in the dielectric case, integration by parts in eq. (18) without the surface term

means integrating over the whole space, even if the magnetization is limited to a finite piece of
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magnetic material. Consequently, the abrupt cessation of magnetization at the boundary of

the magnetic material gives rise to the delta-function term in the bound current density (19):

Jb(x) ⊃ −δ(xnormal)n(x)×M(x) (22)

In other words, there is a surface density of the bound current

Kb(x) = −n(x)×M(x) = +M(x)× n(x). (23)

For example:

M
Kb Kb

Similar to the macroscopic Gauss Law, the macroscopic Ampere Law (21) is usually

written with the ∇×M term on the other side of the equation. That is, in addition to the

macroscopic magnetic induction field B(x), we define the magnetic intensity field

H(x) =
1

µ0
B(x) − M(x), (24)

then for this H field, the Ampere’s Law become simply

∇×H(x) = J(x) (25)

where J(x) is just the macroscopic electric current, regardless of any bound currents due to

magnetization.
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Like the electrostatics, the key equations of macroscopic magnetostatics — the zero-

divergence law and the Ampere’s Law — are obeyed by two different magnetic fields,

∇ ·B = 0 but ∇×H = J, (26)

and to relate the magnetic induction field B to the magnetic intensity field H we need the

equation(s) of state for the magnetic materials(s) in question. For the diamagnetic and

paramagnetic materials, the equation of state is approximately linear,

B = µµ0H (27)

where µ is the relative permeability of the material in question. (µ = 1 − small for the

diamagnetics and µ = 1 + small for the paramagnetics.) For very soft ferromagetics like

pure iron, the equation of state is also approximately linear in weak magnetic fields, but

with µ ≫ 1. But for other ferromagetics, the relation between the H and the B fields is

non-linear and depends on the prior history of the magnetic field. The best way to describe

such a relation is by drawing the hysteresis loop like

H

B

Equations of state and the differential conditions like (15) or (26) are good for the bulk

of a dielectric or a magnetic material. But macroscopically, the boundaries between different
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materials (or a material and a vacuum) appear discontinuous, so what happens at such a

boundary?

Mathematically, if a field is discontinuous across a boundary, then its normal derivative

has a delta-function spike

∂f(x)

∂xnormal

= disc(f)× δ(xnormal) + finite (28)

while the derivatives in the tangential directions are finite. For a vector field V(x), this

means

∇ ·V = disc(Vnormal)δ(xnormal) + finite,

∇×V = n× disc(Vtangent)δ(xnormal) + finite.
(29)

For the electric fields at the edge of a dielectric, this means

∇× E = 0 =⇒ disc(Etangent) = 0, (30)

and if there are no macroscopic electric charges at the surface, then also

∇ ·D = ρ = finite =⇒ disc(Dnormal) = 0. (31)

In other words:

• The E‖ and the D⊥ fields must be continuous across the boundary.

• But the E⊥ and the D‖ fields may be discontinuous.

For the outer boundary of a linear dielectric — or for a boundary between two linear di-

electrics — these conditions become

E
‖
side 1 = E

‖
side 2 but ǫ1E

⊥
side 1 = ǫ2E

⊥
side 2 . (32)

Or in terms of the electric potential Φ(x), the potential itself is continuous across the bound-

ary, but its normal derivative changes by the ǫ1/ǫ2 factor, thus

Φ(x, side#1) = Φ(x, side#2) but ǫ1 ×
∂Φ

∂xnormal

∣

∣

∣

∣

side#1

= ǫ2 ×
∂Φ

∂xnormal

∣

∣

∣

∣

side#2

. (33)

Likewise, for the magnetic fields at the boundary of magnetic materials eqs. (29) tells us
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that

∇ ·B = 0 =⇒ disc(Bnormal) = 0, (34)

and if there are no macroscopic surface currents, then also

∇×H = J = finite =⇒ disc(Htangent) = 0. (35)

In other words:

• The H‖ and the B⊥ fields must be continuous across the boundary.

• But the H⊥ and the B‖ fields may be discontinuous.

For the outer boundary of a linear magnetic material — or for a boundary between two such

materials — these conditions become

H
‖
side 1 = H

‖
side 2 but µ1H

⊥
side 1 = µ2H

⊥
side 2 , (36)

or equivalently

B⊥side 1 = B⊥side 2 but
1

µ1
B
‖
side 1 =

1

µ2
B
‖
side 2 . (37)

Note that the boundary conditions for the H and B fields at the surface of a magnetic

material are look completely similar to the boundary conditions for the E and D fields at

the surface of a dielectric. However, there are differences affecting the applications of these

boundary conditions.

• Most dielectric materials are linear. In the other hand, most ferromagnetic materials

are non-linear. In the extreme case, the permanent magnets are rather common while

the permanently polarized dielectrics are fairly rare.

• The boundary conditions for the electric fields can be stated in terms of the electric

potential Φ(x). Combining these conditions with the appropriate Laplace or Poisson

equations for the Φ(x) in the bulk of a dielectric or in the vacuum outside it, we get a

mathematical problem which may be solved by the usual tools of electrostatics: mirror

charges, separation of variables, Green’s functions, multipole expansion, etc., etc. On
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other hand, stating the boundary conditions for the magnetic fields in terms of the

vector potential A(x) makes for a much harder system of equations and boundary

conditions.

Example of a Dielectric Boundary Problem

Consider a ball of uniform linear dielectric (radius R, dielectric constant ǫ) surrounded

by vacuum. There are no macroscopic charges anywhere in the system except infinitely far

away, and those far-away charges create a uniform external electric field E0. That is, the

electric field E(x) asymptotes to E0 for |x| → ∞.

Inside the ball, the Gauss Law ∇ · D = ∇ · (ǫǫ0E) = ρ = 0 leads to ∇ · E = 0 (since

ǫ is constant inside the ball) and hence to the Laplace equation ∇Φ2 = 0 for the potential.

Outside the ball, the potential also obeys the Laplace equation. However, on the surface of

the ball Φ obeys

∇2Φ(r, θ, φ) = δ(r −R)× some function of (θ, φ) 6= 0 (38)

rather than ∇2Φ = 0. Thanks to the delta-function on the RHS here, the potential itself is

continuous across the surface, but its radial derivative is discontinuous according to eq. (33).

To solve the Laplace equation for the Φ inside and outside the ball, let’s separate the

variables in spherical coordinates (r, θ, φ). Thanks to the axial symmetry of the system, Φ

depends only on the r and θ coordinates but not the φ coordinate. Consequently, inside the

ball

Φinside(r, θ) =
∞
∑

ℓ=0

Aℓ × rℓ × Pℓ(cos θ) (39)

for some constants Aℓ, while outside the ball

Φinside(r, θ) =
∞
∑

ℓ=0

(

Bℓ × rℓ +
Cℓ

rℓ+1

)

× Pℓ(cos θ) (40)

for some other constants Bℓ and Cℓ. The asymptotic behavior of the potential at r → ∞

follows from the positive powers of r and hence the Bℓ coefficients. Matching this behavior
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to the given asymtotics

Φfar away = −E0x3 = −E0 × r × cos θ = −E0 × r1 × P1(cos θ) (41)

tells us that B1 = −E0 while all other Bℓ = 0.

To find the Aℓ and the Cℓ constants, we use the boundary conditions (33) at R = 0.

Matching the potentials (39) and (40) at r = R but all θ means matching the coefficients of

Pℓ(cos θ) in both series at r = R, thus

Aℓ × Rℓ = Bℓ ×Rℓ +
Cℓ

Rℓ+1
. (42)

Likewise, matching ǫ× (∂Φinside/∂r) = (∂Φoutside/∂r) at r = R and any θ leads to

ǫ× ℓAℓR
ℓ−1 = ℓBℓR

ℓ−1 − (ℓ+ 1)
Cℓ

Rℓ+2
. (43)

Solving these linear equations for the Aℓ and Cℓ constants in terms of the Bℓ gives us

Aℓ =
2ℓ+ 1

(ǫ+ 1)ℓ+ 1
×Bℓ , Cℓ = −

ℓ(ǫ− 1)

(ǫ+ 1)ℓ+ 1
R2ℓ+1 ×Bℓ . (44)

In light of the asymptotic conditions at r → ∞, this means

Aℓ = Bℓ = Cℓ = 0 for any ℓ 6= 1 (45)

while

B1 = −E0 , A1 = −
3

ǫ+ 2
E0 , C1 = +

ǫ− 1

ǫ+ 2
R3E0 . (46)

Therefore,

Φinside = −
2

ǫ+ 2
E0r cos θ (47)

while

Φoutside = −E0r cos θ +
ǫ− 1

ǫ+ 2
R3 cos θ

r2
. (48)

In other words, the electric field inside the dielectric ball is uniform

Einside = +
3

ǫ+ 2
E0 (49)

while outside the ball we have a superposition of the external field E0 and a pure dipole field
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of dipole moment

p = 4πǫ0
ǫ− 1

ǫ+ 2
R3E0 . (50)

Scalar Magnetic Potential

Many boundary problems for the magnetic fields can be solved using the scalar magnetic

potential Ψ(x). (In Jackson’s textbook it’s called ΦM (x).) Unlike the vector magnetic

potential A(x) which can be defined in any situation involving magnetic fields, static or

time-dependent, the scalar magnetic potential Ψ(x) is limited to static problems without any

macroscopic currents J, just the permanent magnets and perhaps other magnetic materials.

In such a situation, the macroscopic Ampere law ∇×H = J becomes simply ∇×H = 0,

and if this equations holds everywhere, then the magnetic intensity field H(x) must be a

gradient of some scalar field. So by analogy with the electrostatic material, let

H(x) = −∇Ψ(x). (51)

Now consider the magnetic Gauss law ∇ ·B = 0. In terms of the H field, this means

∇ ·H =
1

µ0
∇ ·B − ∇ ·M = −∇ ·M (52)

and hence

∇2Ψ(x) = +∇ ·M(x). (53)

This is the Poisson equation for the scalar magnetic potential where −∇ · M(x) acts as a

charge density. By analogy with the Coulomb potential, the formal solution to this equation

is

Ψ(x) = −

∫∫∫

(∇ ·M)(y) d3y

4π|x− y|
. (54)

But please note that the divergence ∇·M includes the delta-function spike at the surface of

a magnet due to abrupt cessation of the magnetization M(x), so eq. (54) should better be
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written as

Ψ(x) = −

∫∫∫

inside of
a magnet

(∇ ·M)(y) d3y

4π|x− y|
+

∫∫

magnet′s
surface

M(y) · n(y) d2y

4π|x− y|
. (55)

For an example, consider a permanent magnet shaped like a long thin bar:

M North poleSouth pole

Assume the magnetization M is uniform inside the magnet and its direction is parallel to

the magnet’s long dimension. In this case, ∇ ·M = 0 inside the magnet, so only the surface

integral in eq. (55) contributes to the Ψ(x) and hence to the magnetic field. As to the

magnet’s surface, M · n = +M at the North pole, M · n = −M at the South pole, and

M · n = 0 along the long sides of the magnet. Consequently, only the poles of the magnet

contribute to the surface integral, which means

Ψ(x) =
Ma

4π

(

1

|x− yN.pole|
−

1

|x− yS.pole|

)

(56)

where a is the cross-sectional area of the magnet, and hence

H(x) =
Ma

4π

(

x− yN

|x− yN |3
−

x− yS

|x− yS |3

)

. (57)

Thus, the magnetic field of a long thin bar magnet looks just like the electric field of a

physical dipole, with a positive charge at the North pole and the negative charge at the

South pole. Very far from the bar magnet, we may approximate this field as a pure dipole

field

H(x) ≈
3(m · n)n − m

4πr3
(58)

of net magnetic moment

m = LaM = (magnet’s volume)M. (59)

Closer to the magnet, eq. (57) gives us the magnetic field everywhere the distance to the

nearest pole is much larger than the magnet’s width (not length!), i.e., everywhere except
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very close to one of the poles. In particular, eq. (57) is valid inside the bar magnet itself,

where it yields an H field pointing in the opposite direction from the magnetization M!

However, the B field inside the magnet points in the same direction as the magnetization

because |H| = O(Ma/L2) ≪ M and hence B = µ0(H+M) ≈ µ0M.

For a more interesting example, consider a permanent magnet in the shape of a solid

ball. Again, we assume uniform magnetization M inside this magnet, so only the surface

integral term in eq. (55) contributes to the scalar magnetic potential Ψ(x). But instead of

evaluating this surface integral, let’s use a different method for solving the Poisson equation

∇2Ψ(x) = ∇ ·M(x) = −M cos θ δ(r −R) [in spherical coordinates (r, θ, φ)]. (60)

Separating the variables, we note that the angular dependence of the RHS here has the form

of the spherical harmonic Y1,0(θ, φ) ∝ cos θ, so the scalar potential Ψ should have similar

angular dependence,

Ψ(r, θ, φ) = f(r)× cos θ (61)

for some radial function f(r). In terms of this function, the Poisson equation becomes

f ′′(r) +
2

r
f ′(r) −

ℓ(ℓ+ 1) = 2

r2
f(r) = −Mδ(r −R). (62)

Solving this equation subject to boundary conditions of finite Ψ at both r = 0 and r = ∞,

we have

f(r) = A× r for r < R,

f(r) =
B

r2
for r > R,

(63)

where A and B are some constants which solve the conditions

disc(f) = 0, disc(f ′) = −M @r = R, (64)

which amount to

B

R2
− A×R = 0 but

−2B

R3
− A = −M. (65)
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Solving these linear equations gives us

A =
M

3
, B =

MR3

3
. (66)

and hence

Ψinside = +
M

3
r cos θ, Ψoutside =

MR3

3

cos θ

r2
. (67)

Consequently, inside the magnet the magnetic intensity field is uniform

H = −∇Ψ = −
M

3
(68)

and hence the magnetic induction field

B = µ0(H+M) =
2µ0
3

M. (69)

And outside the magnet we have a pure dipole field

H =
B

µ0
= −∇Ψ =

3(m · n)n − m

4πr3
(70)

for the net magnetic moment

m = 4π
MR3

3
= (magnet’s volume)M. (71)

Besides the permanent magnets, the scalar magnetic potential Ψ(x) is very useful for

calculating the magnetic fields in and around linear magnetic materials subject to external

fields. In terms of Ψ, such problems are mathematically similar to the dielectric boundary

problems in terms of the electric potential Φ(x), so one may employ all the usual electrostatic

techniques. Your homework includes reading in Jackson’s textbook (§5.12) about using the

scalar magnetic potential to understand magnetic shielding by a spherical shell of a high-

permeability material.
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In presence of macroscopic currents, the scalar magnetic potential has a much more

limited use. Obviously, we cannot possibly use Ψ(x) inside a conductor where∇×H = J 6= 0.

But outside the conductors — which is most of the space when the current flows in thin wires

— we have ∇×H = 0, so locally H(x) is a gradient of some scalar. But globally, any such

scalar −Ψ(x) would be a multivalued function of x.

For example, consider the magnetic field of a long this wire. In cylindrical coordinates

(z, s, φ),

H(z, s, φ) =
I

2π

nφ

s
=

I

2π
∇φ , (72)

which obviously corresponds to

Ψ(z, s, φ) = −
I

2π
φ. (73)

But the polar angle φ is a multivalued coordinate because φ+ 2π × any integer corresponds

to exactly the same direction as φ. Moreover, if we track the φ coordinate along some closed

loop circling around the z axis and make sure φ changes in a continuous fashion, then by

the end of the loop φ does not come back to its starting value but changes by 2π. (Or

−2π, depending on the direction of the loop.) Technically, we can make φ single-valued by

shoehorning it into the interval 0 ≤ φ < 2π, but then we would sacrifice the continuity, and

a smooth motion in space might case a sudden jump of φ from 2π to zero or vice verse, and

that would introduce all kinds of spurious delta-functions into derivatives. To avoid such

spurious delta-finctions, we have to treat φ as multi-valued: the values of this coordinate are

not numbers but rather numbers modulo 2π.

Consequently, the scalar magnetic potential (73) is multivalued: At any point x, the

value of Ψ(x) is a number modulo I rather than a regular number. This is general behavior

of Ψ in presence of any current-carrying wires, straight or curved: Ψ(x) is multivalued, and

if we follow any of its values as x moves around the wire in a closed loop, then

Ψ(end of the loop) − Ψ(beginning of the loop) = ∓I (74)

even through the loop begins and ends at the same point x. (The sign of ∓I on the RHS

here depends on the sense of the loop, counterclockwise versus clockwise.) Indeed by the
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Ampere’s Law

∆Ψ =

∮

dΨ =

∮

∇Ψ(x) · dx = −

∮

H · dx = −I[through the loop]. (75)

In case of the electric potential Φ(x), such multivaluedness would not be allowed since

voltages are physically measurable, and the voltage between any point and itself must be

zero. But unlike the electric potential Φ, the magnetic scalar potential Ψ is not physically

measurable; indeed, it does not have any direct physical meaning, it’s just a tool for calcu-

lating the magnetic intensity field H(x). So there is no harm in Ψ(x) being multivalued, as

long as its gradient ∇Ψ = −H is single-valued.

In the homework, I let you work out another example, namely a closed wire loop L (of

any shape, as long as it’s closed) carrying current I. Your task is to show that for any such

loop

Ψ(x) =
I

4π
Ω(x) (76)

where Ω(x) is the solid angle spanned by the cone through the loop L with a vertex at x.

You shall also see that the properly defined Ω(x) is multivalued, with Ω + 4π × an integer

having the same physical meaning as Ω.
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