
Electric Quadrupole radiation

As I explained last week, and oscillating electric quadrupole radiates EM waves which

in the far zone become
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In my notations here, r and n are the radius and the direction of the position x, and Q is

the amplitude of the quadrupole moment tensor in matrix form. The product Q · n is the

matrix product of a matrix and a vector — its a vector with components (Q · n)i = Qijnj .

The power carried by the EM waves (1) in the direction n is given by
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To calculate the net radiated power, we need to integrate this formula over the 4π solid

angle. In components,
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where the remaining integrals on the RHS must be rotationaly invariant and also totally

symmetric in the indices of all the n vectors. Thus
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for some overall coefficients A2 and A4 which obtain by setting all the indices to 3 (i.e., z):

A2 =

∫∫

d2Ω cos2 θ =
4π

3
, 3A4 =

∫∫

d2Ω cos4 θ =
4π

5
. (5)

1



Consequently,
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and therefore the net radiated power is
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The angular distribution of the quadrupole radiation depends on the structure of the

quadrupole moment tensor, which can range from a linear quadrupole (all charges arranged

along a line) to planer quadrupole (all charges in the same plane) to complicated 3D setups

where the charges move in different directions with different phases. For specific examples,

let’s consider the quadrupole moment tensors proportional to the spherical harmonics Yℓ,m

with ℓ = 2, namely
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• The m = 0 quadrupole mode included all linear quadrupoles as well as other config-

urations with similar symmetries. (An axial symmetry, or at least a symmetry of 90◦
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rotations around the z axis.) For this mode
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and therefore the angular distribution of the radiated power is
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∝ cos2 θ sin2 θ. (12)
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• Next, consider the m = ±1 quadrupole modes, for which
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• Finally, the m = ±2 quadrupole modes, which include the planar quadrupoles. For

these modes
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