Finite Multiplets of the Spin(3,1) Group.

In these notes I classify all the finite irreducible multiplets of the continuous Lorentz
group SOT(3,1), or rather of its double-covering group Spin(3,1). The notes are inster-
spersed with optional exercises for the students. The solutions to the exercises will appear

on a separate polution pagd.

I presume you read these notes after finishing your homework#17, so you should be
familiar with the Lorents J and K generators and their Dirac spinor representations. In
these notes, it’s convenient to re-organize the J and K generators into two non-hermitian
3—vectors

Jy = 33 +4K) and J_ = 1(J - iK) = JL. (1)

D[

1. Show that the two 3-vectors commute with each other, [j f_, Jt ] = 0, while the compo-
nents of each 3-vector satisfy angular momentum commutation relations, [j _’f_, jﬁ] =
iek’émjf and [JF, JU] = iehtm jm.

By themselves, the 3 J _If_ generate a symmetry group similar to rotations of a 3D space,
but since the .J _]f_ are non-hermitian, the finite irreducible multiplets of this symmetry are
non-unitary analytic continuations (to complex “angles”) of the ordinary angular momentum
multiplets (j) of spin j = 0, %, 1, %, 2,.... Likewise, the finite irreducible multiplets of the
symmetry group generated by the JE are analytic continuations of the spin-j multiplets of
angular momentum. Moreover, the two symmetry groups commute with each other, so the
finite irreducible multiplets of the net Lorentz symmetry are tensor products (ji) ® (j-)
of the j+ and J_ multiplets. In other words, distinct finite irreducible multiplets of the
Lorentz symmetry may be labeled by two integer or half-integer ‘spins’ j; and j_, while
the states within such a multiplet are |j4,j—, m4y,m_) for my = —jy, ..., +jy and m_ =
—

The simplest non-trivial Lorentz multiplets are two inequivalent doublets, the left-handed
Weyl spinor 2 and the right-handed Weyl spinor 2*. The 2 multiplet has j; = % while j_ =0,
hence J acts as %O' while J_ does not act at all, or in terms of the J and K generators
J= %0' while K = —%0'. The conjugate 2* multiplet has j_ = % while j4 = 0, hence J acts

as %U while K acts as +%0’.
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2. Check that these two doublets are indeed the LH Weyl spinors and the RH Weyl spinor
from the homework set#7 (problem 6).

3. Check that for finite Lorentz symmetries, the 2 x 2 matrices M, and Mg representing

them in the LH and the RH Weyl spinor multiplets have determinant = 1.

The complex (but not necessary unitary) 2 x 2 matrices of unit determinant form a non-
compact group called the SL(2,C). This group is isomorphic to the Spin(3,1), the double
cover of the continuous Lorentz group SOT(3,1). Just like the SU(2) is isomorphic to the
Spin(3), the double cover of the SO(3) rotation group.

For the Spin(3) = SU(2) group, one can construct a multiplet of any spin j from a

symmetric tensor product of 25 doublets. This procedure gives us an object Doy, with
R

27 spinor indices ay,...,ag; = 1,2 that’s totally symmetric under permutation of those

indices and transforms under an SU(2) symmetry U as
(pal’a2""a2j - Uaﬂll Uaﬁj o UOZQJJ (pBIwBQ"'wBQj' (2>

For integer j, such objects are equivalent to tensors of the SO(3); for example, for j = 1

Pop = Ppq is equivalent to an SO(3) vector 3.

For the Lorentz group Spin(3,1) we have a similar situation — any multiplet can be
constructed by tensoring together a bunch of two-component spinors of the SL(2,C). But
unlike the SU(2), the SL(2,C) has two inequivalent doublets 2 % 2* transforming under
different rules. Notationally, we shall distinguish them by different index types: the un-
dotted Greek indices belong to spinor that transform according to M € SL(2,C) while the

dotted Greek indices belong to spinors that transform according to M*:
(Wr)o = MJ(Wr)s % (02tr)y — M°(o2r);, M € SL(2,C). (3)

Combining such spinors to make a multiplet with ‘spins’ j;+ and j_, we make an object
gy refias ) with 274 un-dotted indices and 2j_ dotted indices. ®_ is totally sym-

metric under permutations of the un-dotted indices with each other or dotted indices with

each other, but there is no symmetry between the dotted and the un-dotted indices. Under
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an SL(2,C) symmetry M, the un-dotted indices transform according to M while the dotted

indices transform according to the M*, thus
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Of particular importance among such multi-spinors is the bi-spinor V.5 with j; = j_ = %

— it is equivalent to the Lorentz vector V#. The map between bi-spinors and Lorentz vectors
involves four hermitian 2 x 2 matrices o, = (1,0). In SL(2,C) terms, each o, matrix has
one dotted and one un-dotted index, thus (0,)a4. Using the o, we may re-cast any Lorentz

vector V# as a matrix

VE o Vig, = VY + V.o (5)

an hence as a (%, %) bi-spinor

Voy = (Vuau)av = V%5 + V- 04y, (6)

Under an SL(2, C) symmetry, the bi-spinor transforms as
Vg = Vay = MIMP Vs, (7)

or in matrix form,

Vi, — V", = M (Via,) M. (8)
Since the four matrices o, form a complete basis of 2 x 2 matrices, eq. (8) defines a linear
transform V'# = LA, (M)V".

4. Prove that for any SL(2, C) matrix M, the transform L%, (M) defined by eq. (8) is real
(real V' for real V#), Lorentzian (preserves V,;V'# =V}, V#) and orthochronous.

Hint: prove and use det(V,o*) =V, V*.
x For extra challenge, show that this transform is proper, det(L) = +1.

5. Verify that this SL(2,C) — SO (3,1) map respects the group law, L/, (MaM;) =
LF (M) LA, (My).



6. Show that for the L(M) defined by eq. (8), the LH Weyl spinor representation of L(M)
is My (L) = M while the RH Weyl spinor representation is M = oo M*03.

In general, any (j,j—) multiplet of the SL(2, C) with integer net spin jt + j_ is equiva-
lent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the
tensors.) For example, the (1,1) multiplet is equivalent to a symmetric, traceless 2—index
tensor TH = +T"" T}/ = 0. For j; # j_ the representation is complex, but one can
make a real tensor by combining two multiplets with opposite j+ and j_, for example the

(1,0) and the (0,1) multiplets are together equivalent to the antisymmetric 2-index tensor
Frv — —Fvn,

7. Verify the above examples.

Hint: For any kind of angular momentum, (j = %) ®(j = %) =(=1)a(G=0).



