Poisson Brackets and Commutator Brackets

Both classical mechanics and quantum mechanics use bi-linear brackets of variables with similar algebraic properties. In classical mechanics the variables are functions of the canonical coordinates and momenta, and the Poisson bracket of two such variables $A(q, p)$ and $B(q, p)$ are defined as

$$
\begin{equation*}
[A, B]_{P} \stackrel{\text { def }}{=} \sum_{i}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \tag{1}
\end{equation*}
$$

In quantum mechanics the variables are linear operators in some Hilbert space, and the commutator bracket of two operators is

$$
\begin{equation*}
[A, B]_{C} \stackrel{\text { def }}{=} A B-B A . \tag{2}
\end{equation*}
$$

Both types of brackets have similar algebraic properties:

1. Linearity: $\left[\alpha_{1} A_{1}+\alpha_{2} A_{2}, B\right]=\alpha_{1}\left[A_{1}, B\right]+\alpha_{2}\left[A_{2}, B\right]$ and $\left[A, \beta_{1} B_{1}+\beta_{2} B_{2}\right]=\beta_{1}\left[A, B_{1}\right]+$ $\beta_{2}\left[A, B_{2}\right]$.
2. Antisymmetry: $[A, B]=-[B, A]$.
3. Leibniz rules: $[A B, C]=A[B, C]+[A . C] B$ and $[A, B C]=B[A, C]+[A, B] C$.
4. Jacobi Identity: $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$.

Also, both types of brackets involving the Hamiltonian can be used to describe the time dependence of the classical/quantum variables. In classical mechanics,

$$
\begin{align*}
\frac{d}{d t} A(q, p)= & \sum_{i}\left(\frac{\partial A}{\partial q_{i}} \frac{d q_{i}}{d t}+\frac{\partial A}{\partial p_{i}} \frac{d p_{i}}{d t}\right) \\
& \langle\langle\text { by the Hamilton equations }\rangle\rangle \\
= & \sum_{i}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right) \tag{3}\\
\equiv & {[A, H]_{P}, }
\end{align*}
$$

while in quantum mechanics we have

$$
\begin{equation*}
i \hbar \frac{d}{d t}\langle\psi| \hat{A}|\psi\rangle=\langle\psi|[\hat{A}, \hat{H}]_{C}|\psi\rangle \tag{4}
\end{equation*}
$$

(the Heisenberg-Dirac equation); in particular, in the Heisenberg picture of QM

$$
\begin{equation*}
i \hbar \frac{d}{d t} \hat{A}=[\hat{A}, \hat{H}]_{C} . \tag{5}
\end{equation*}
$$

The similarity between the classical Poisson brackets and the quantum commutator brackets stems from the following theorem: Once we generalize the Poisson brackets to the non-commuting variables of quantum mechanics, they become proportional to the commutator brackets,

$$
\begin{equation*}
[\hat{A}, \hat{B}]_{P}=\frac{\hat{A} \hat{B}-\hat{B} \hat{A}}{i \hbar} \tag{6}
\end{equation*}
$$

Mathematically speaking: for any non-commutative but associative variables, any bracket $[A, B]$ with the algebraic properties $1-4$ is proportional to the commutator bracket:

$$
\begin{equation*}
[A, B]=c(A B-B A) \tag{7}
\end{equation*}
$$

for a universal constant c (same c for all variables); in Physics $c=1 / i \hbar$.
Proof: Take any 4 variables A, B, U, V and calculate $[A U, B V]$ using the Leibniz rules, first for the $A U$ and then for the $B V$:

$$
\begin{align*}
{[A U, B V] } & =A[U, B V]+[A, B V] U \\
& =A B[U, V]+A[U, B] V+B[A, V] U+[A, B] V U \tag{8}
\end{align*}
$$

OOH , if we use the two Leibniz rules in the opposite order we get a different expression

$$
\begin{align*}
{[A U, B V] } & =B[A U, V]+[A U, B] V \\
& =B A[U, V]+B[A, V] U+A[U, B] V+[A, B] U V \tag{9}
\end{align*}
$$

To make sure the two expressions are equal to each other we need

$$
\begin{gather*}
A B[U, V]+[A, B] V U=B A[U, V]+[A, B] U V \\
\Downarrow \\
(A B-B A)[U, V]=[A, B](U V-V U) \tag{10}\\
\Downarrow \\
{[U, V](U V-V U)^{-1}=(A B-B A)^{-1}[A, B]}
\end{gather*}
$$

On the last line here, the LHS depends only on the U and V while the RHS depends only on the A and B, and the only way a relation like that can work for any unrelated variables
is if the ratios on both sides of equations are equal to the same universal constant c, thus

$$
\begin{equation*}
[A, B]=c(A B-B A) \quad \text { and } \quad[U, V]=c(U V-V U) . \tag{11}
\end{equation*}
$$

Quod erat demonstrandum.
Thanks to this theorem, we may quantize a classical theory described in terms of noncanonical variables $\xi_{1}, \ldots, \xi_{2 N}$ (instead of the canonical q_{1}, \ldots, q_{N} and p_{1}, \ldots, p_{N}) as long as we have a consistent algebra of Poisson brackets. (Their definition would be different from eqs. (1), but they have to obey the algebraic rules 1-4.) Given the classical Poisson algebra, the quantization maps it to the commutator algebra of operators in some Hilbert space. That is, if classically $[A, B]_{P}=C$, then the corresponding operators in quantum mechanics should obey $[\hat{A}, \hat{B}]=i \hbar \hat{C}$.

In particular, if we do have classical canonical variables q_{i} and p_{i}, then

$$
\begin{equation*}
\left[q_{i}, q_{j}\right]_{P}=0, \quad\left[p_{i}, p_{j}\right]_{P}=0, \quad,\left[q_{i}, p_{j}\right]_{P}=\delta_{i j}, \tag{12}
\end{equation*}
$$

so the corresponding quantum operators should obey the canonical commutation relations

$$
\begin{equation*}
\left[\hat{q}_{i}, \hat{q}_{j}\right]_{C}=0, \quad\left[\hat{p}_{i}, \hat{p}_{j}\right]_{C}=0, \quad\left[\hat{q}_{i}, \hat{p}_{j}\right]_{C}=i \hbar \delta_{i j} \tag{13}
\end{equation*}
$$

