
Poisson Brackets and Commutator Brackets

Both classical mechanics and quantum mechanics use bi-linear brackets of variables with

similar algebraic properties. In classical mechanics the variables are functions of the canonical

coordinates and momenta, and the Poisson bracket of two such variables A(q, p) and B(q, p)

are defined as

[A,B]P
def
=
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1)

In quantum mechanics the variables are linear operators in some Hilbert space, and the

commutator bracket of two operators is

[A,B]C
def
= AB − BA. (2)

Both types of brackets have similar algebraic properties:

1. Linearity: [α1A1+α2A2, B] = α1[A1, B]+α2[A2, B] and [A, β1B1+β2B2] = β1[A,B1]+

β2[A,B2].

2. Antisymmetry: [A,B] = −[B,A].

3. Leibniz rules: [AB,C] = A[B,C] + [A.C]B and [A,BC] = B[A,C] + [A,B]C.

4. Jacobi Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Also, both types of brackets involving the Hamiltonian can be used to describe the time

dependence of the classical/quantum variables. In classical mechanics,

d

dt
A(q, p) =

∑
i

(
∂A

∂qi

dqi
dt

+
∂A

∂pi

dpi
dt

)
〈〈 by the Hamilton equations 〉〉

=
∑
i

(
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)
≡ [A,H]P ,

(3)

while in quantum mechanics we have

ih̄
d

dt
〈ψ| Â |ψ〉 = 〈ψ| [Â, Ĥ]C |ψ〉 (4)
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(the Heisenberg–Dirac equation); in particular, in the Heisenberg picture of QM

ih̄
d

dt
Â = [Â, Ĥ]C . (5)

The similarity between the classical Poisson brackets and the quantum commutator

brackets stems from the following theorem: Once we generalize the Poisson brackets to the

non-commuting variables of quantum mechanics, they become proportional to the commu-

tator brackets,

[Â, B̂]P =
ÂB̂ − B̂Â

ih̄
. (6)

Mathematically speaking: for any non-commutative but associative variables, any bracket

[A,B] with the algebraic properties 1–4 is proportional to the commutator bracket:

[A,B] = c(AB −BA) (7)

for a universal constant c (same c for all variables); in Physics c = 1/ih̄.

Proof: Take any 4 variables A,B, U, V and calculate [AU,BV ] using the Leibniz rules, first

for the AU and then for the BV :

[AU,BV ] = A[U,BV ] + [A,BV ]U

= AB[U, V ] + A[U,B]V + B[A, V ]U + [A,B]V U.
(8)

OOH, if we use the two Leibniz rules in the opposite order we get a different expression

[AU,BV ] = B[AU, V ] + [AU,B]V

= BA[U, V ] + B[A, V ]U + A[U,B]V + [A,B]UV.
(9)

To make sure the two expressions are equal to each other we need

AB[U, V ] + [A,B]V U = BA[U, V ] + [A,B]UV

‖
⇓

(AB −BA)[U, V ] = [A,B](UV − V U)

‖
⇓

[U, V ](UV − V U)−1 = (AB −BA)−1[A,B]

(10)

On the last line here, the LHS depends only on the U and V while the RHS depends only

on the A and B, and the only way a relation like that can work for any unrelated variables
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is if the ratios on both sides of equations are equal to the same universal constant c, thus

[A,B] = c(AB −BA) and [U, V ] = c(UV − V U). (11)

Quod erat demonstrandum.

Thanks to this theorem, we may quantize a classical theory described in terms of non-

canonical variables ξ1, . . . , ξ2N (instead of the canonical q1, . . . , qN and p1, . . . , pN ) as long

as we have a consistent algebra of Poisson brackets. (Their definition would be different

from eqs. (1), but they have to obey the algebraic rules 1–4.) Given the classical Poisson

algebra, the quantization maps it to the commutator algebra of operators in some Hilbert

space. That is, if classically [A,B]P = C, then the corresponding operators in quantum

mechanics should obey [Â, B̂] = ih̄Ĉ.

In particular, if we do have classical canonical variables qi and pi, then

[qi, qj ]P = 0, [pi, pj ]P = 0, , [qi, pj ]P = δij , (12)

so the corresponding quantum operators should obey the canonical commutation relations

[q̂i, q̂j ]C = 0, [p̂i, p̂j ]C = 0, [q̂i, p̂j ]C = ih̄δij . (13)
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