
Relativistic Causality for Fermions

In a quantum field theory, relativistic causality requires that any two measurable local

operators Ô1(x) and Ô(y) acting at points separated by a spacelike interval x − y must

commute with each other, Ô1(x)Ô2(y) = +Ô2(y)Ô1(x). In general, a local operator is

a product of quantum field and/or their derivatives, so if all fields at points separated by

spacelike intervals commute with each other, φ̂A(x)φ̂B(y) = +φ̂B(y)φ̂A(x) when (x−y)2 < 0,

then so do all local operators at x and y, and the relativistic causality is upheld.

However, not all local operators are necessarily measurable, and this gives us more op-

tions for the relativistic causality. In particular, in fermionic theories, the fermionic quantum

fields Ψ̂α(x) and Ψ̂†α(x) themselves are not measurable. Only the bilinears such as the current

Ĵµ(x) = Ψ̂(x)γµΨ̂(x) are measurable. In general, local measurable operators are products of

even numbers of fermionic fields and their derivatives — as well as any number of bosonic

fields and their derivatives,

measurable Ô(x) =
evenN∏
i=1

(
Fi(x) or ∂Fi(x) or ∂∂Fi(x) or · · ·

)
×

×
anyM∏
i=1

(
Bi(x) or ∂Bi(x) or ∂∂Bi(x) or · · ·

)
.

(1)

Consequently, to assure that all such measurable operators commute at spacelike-separated

points, the fermionic fields should either commute or anticommute with each other. Alto-

gether, we need

For any bosonic fields B̂1 and B̂2, and any fermionic fields F̂1 and F̂2,

when (x− y)2 < 0,

B̂1(x)× B̂2(y) = +B̂2(y)× B̂1(x), (2)

F̂i(x)× B̂j(y) = +B̂j(y)× F̂i(x), (3)

F̂1(x)× F̂2(y) = −F̂2(y)× F̂1(x). (4)

By itself, the relativistic causality is consistent with either ‘+’ or ‘−’ sign on the last line (4),

but other considerations fix that sign to be negative. Thus, at spacelike separations, the

fermionic fields anticommute rather than commute with each other.
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The simplest reason why the antifermionic fields should anticommute is the fermionic

Fock space. To realize the Pauli principle, we need anticommuting creation and annihilation

operators. The quantum fields are linear combinations of such operators, so at equal times

but x 6= y, the fields should anticommute with each other rather than commute, and by

relativistic causality, the same sign should extend to any spacelike x− y.

Another reason for the anticommutation relation is the spin-statistics theorem — the

spinor fields should anticommute with each other rather than commute. In this writeup I

shall explain how this works for the free Dirac fields; the general case is explained in the my

notes on the spin-statistics theorem .

Before we do anything else, let’s by assume the free Dirac spinor fields anticommute at

equal times, and show that they also anticommute at all spacelike separations. Expanding

the spinor fields into creation and annihilation operators, we get

Ψ̂α(x) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−ipx uα(p, s) âp,s + e+ipx vα(p, s) b̂†p,s

)p0=+Ep

,

Ψ̂β(y) =

∫
d3p

(2π)3
1

2Ep

∑
s

(
e−ipx vβ(p, s) b̂p,s + e+ipx uβ(p, s) â†p,s

)p0=+Ep

,

(5)

where the creation/annihilation operators obey the fermionic anticommutation relations,

{âp,s, â
†
p′,s′} = {b̂p,s, b̂

†
p′,s′} = +2Ep(2π)3δ(3)(p− p′)× δss′ ,

everybody else anticommutes.
(6)

Consequently,

{
Ψ̂α(x), Ψ̂β(y)

}
≡ 0 ≡

{
Ψ̂α(x), Ψ̂β(y)

}
for any x− y, (7)

but the anticommutator of a Ψ̂ with a Ψ̂ is not so trivial. Indeed, such anticommutator gets

non-trivial terms from âp,s ∈ Ψ̂(x) and matching â†p,s ∈ Ψ̂(y), and also from b̂†p,s ∈ Ψ̂(x)
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and matching b̂p,s ∈ Ψ̂(y). Specifically,

{
Ψ̂α(x), Ψ̂β(y)

}
=

∫
d3p

(2π)3 2Ep

∑
s

∫
d3p′

(2π)3 2E′p

∑
s′ e−ipx+ip
′y uα(p, s)uβ(p′, s′)× {âp,s, â

†
p′,s′}

+ e+ipx−ip
′y vα(p, s)vβ(p′, s′)× {b̂†p,s, b̂p′,s′}



=

∫
d3p

(2π)3 2Ep

∑
s

 e−ip(x−y) × uα(p, s)uβ(p, s)

+ e+ip(x−y) × vα(p, s)vβ(p′, s′)

 .

(8)

At this point, let’s make use of the spin sums worked out in homework set#8 (problem 2):

∑
s

uα(p, s)uβ(p, s) = (6p+m)αβ ,
∑
s

vα(p, s)vβ(p, s) = (6p−m)αβ , (9)

where 6p = γµpµ for p0 = +Ep. Plugging these spin sums into eq. (8), we obtain

{
Ψ̂α(x), Ψ̂β(y)

}
=

∫
d3p

(2π)3 2Ep

(
e−ip(x−y) × (6p+m)αβ + e+ip(x−y) × (6p−m)αβ

)p0=+Ep

=

∫
d3p

(2π)3 2Ep

(
(+i 6∂x +m)αβe

−ip(x−y) + (−i 6∂x −m)αβe
+ip(x−y)

)p0=+Ep

= (i 6∂x +m)αβ

∫
d3p

(2π)3 2Ep

(
e−ip(x−y) − e+ip(x−y)

)p0=+Ep

= (i 6∂x +m)αβ

(
D(x− y) − D(y − x)

)
,

(10)

where D(x− y) is the good old

D(x− y) =

∫
d3p

(2π)3 2Ep
e−ip(x−y)

∣∣∣p0=+Ep

. (11)

As we have learned a while ago, D(x−y) is invariant under orthochronous Lorentz transforms;

in particular, for spacelike x− y, D(x− y) = D(y−x). Consequently, thanks to the ‘−’ sign

on the bottom line of eq. (10),

{
Ψ̂α(x), Ψ̂β(y)

}
= (i 6∂x +m)αβ

(
D(x− y) − D(y − x)

)
= 0 for spacelike x− y, (12)

which upholds the relativistic causality for the fermionic fields.
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Now suppose for a moment that the spinor fields were commuting (instead of anti-

commuting) at equal times, so in the expansion (5), the creation/annihilation operators

â†p,s, b̂
†
p,s, âp,s, b̂p,s were obeying the bosonic commutation relations (instead of the fermionic

anticommutation relations (6)). Of course, such expansion would have screwed up the Dirac

Hamiltonian

Ĥ =

∫
d3xΨ†(−iγ0~γ ·∇+ γ0m)Ψ 6=

∫
d3p

(2π)3 2Ep

∑
s

(
Ep× â†p,sâp,s + Ep× b̂†p,sb̂p,s

)
(13)

since the particle-hole formalism does not work for the bosons. But even apart from that

issue, we would get problems with relativistic causality. Indeed, we would get

[
Ψ̂α(x), Ψ̂β(y)

]
=

∫
d3p

(2π)3 2Ep

∑
s

∫
d3p′

(2π)3 2E′p

∑
s′ e−ipx+ip
′y uα(p, s)uβ(p′, s′)× [âp,s, â

†
p′,s′ ]

+ e+ipx−ip
′y vα(p, s)vβ(p′, s′)× [b̂†p,s, b̂p′,s′ ]



=

∫
d3p

(2π)3 2Ep

∑
s

 e−ip(x−y) × uα(p, s)uβ(p, s)

− e+ip(x−y) × vα(p, s)vβ(p′, s′)


(14)

with a wrong sign on the bottom line compared to eq. (8), and consequently

[
Ψ̂α(x), Ψ̂β(y)

]
= (i 6∂x +m)αβ

(
D(x− y) + D(y − x)

)
6= 0 for spacelike x− y. (15)

Bottom line: Relativistic causality works for Dirac spinor fields quantized as fermions, and

does not work when the same fields are quantized as bosons. This is a special case of the

spin-statistics theorem .
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Feynman Propagator for the Dirac Spinor Field

For any kind of a free field, the Feynman propagator obtains as the ‘vacuum sandwich’

of the time-ordered product of two fields, one at x and one at y. For the charged fields, the

two fields should have opposite charges, for example, for a charged scalar field

GF (x− y) = 〈0|TΦ̂†(x) Φ̂(y) |0〉 . (16)

For the fermionic fields — such as Dirac spinor fields — the time-orderer T flips sign when

it exchanges two fields,

TΨ̂α(x)Ψ̂†β(y) =

+Ψ̂α(x)Ψ̂†β(y) when x0 > y0,

−Ψ̂†β(y)Ψ̂α(x) when y0 > x0.
(17)

By relativistic causality, the fermionic fields anticommute when separated by spacelike in-

tervals, so the time ordered product — with the signs as in eq. (17) — does not have a

discontinuity when x0 = y0 (except maybe at x = y).

So, keeping the signs in eq. (17) in mind, we define the Feynman propagator for the free

Dirac field as

SFαβ(x− y)
def
= 〈0|T Ψ̂α(x)× Ψ̂β(y) |0〉 . (18)

Note Dirac indices α, β of the spinor fields, so the propagator is a 4× 4 matrix.

To work out what this propagator looks like, let’s consider separate cases of x0 > y0 and

y0 > x0.

For x0 > y0, SFαβ = + 〈0| Ψ̂α(x)× Ψ̂β(y) |0〉 , (19)

where the vacuum sandwich obtains from â†p,s ∈ Ψ̂β(y) and matching âp,s ∈ Ψ̂α(x); all

other combinations of creation and annihilation operators make for 〈0| (op)(op) |0〉 = 0.
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Consequently,

SFαβ(x− y) = +

∫
d3p

(2π)3
1

2Ep

∑
s

e−ip(x−y) × uα(p, s)uβ(p, s)

=

∫
d3p

(2π)3
1

2Ep
e−ip(x−y) × (6p+m)αβ

= (i 6∂ +m)αβ

∫
d3p

(2π)3
1

2Ep
e−ip(x−y)

= (i 6∂ +m)αβD(x− y).

(20)

On the other hand,

For x0 < y0, SFαβ = −〈0| Ψ̂β(y)× Ψ̂α(x) |0〉 , (21)

and this vacuum sandwich obtains from b̂†p,s ∈ Ψ̂α(x) and matching b̂p,s ∈ Ψ̂β(y). Conse-

quently,

SFαβ(x− y) = −
∫

d3p

(2π)3
1

2Ep

∑
s

e+ip(x−y) × vα(p, s)vβ(p, s)

= −
∫

d3p

(2π)3
1

2Ep
e+ip(x−y) × (6p−m)αβ

= +(i 6∂ +m)αβ

∫
d3p

(2π)3
1

2Ep
e+ip(x−y)

= +(i 6∂ +m)αβD(y − x).

(22)

Comparing formulae (20) and (22) to the scalar propagator

GF (x− y) =

{
D(x− y) when x0 > y0,

D(y − x) when x0 < y0,
(23)

we immediately see that for both x0 > y0 and x0 < y0 we have

SFαβ(x− y) = +(i 6∂ +m)αβG
F (x− y). (24)

The only subtlety here concerns equal times x0 = y0, but thanks to relativistic causal-

ity, the scalar propagator is not just continuous but analytic at equal times, and even at
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(x0,x) = (y0,x) the first time derivative is continuous. Since the derivative operator in

eq. (24) is first-order, this allows us to extend the formula (24) to all x − y without excep-

tions.

Finally, let’s go to the momentum space. For the scalar propagator, we have

GF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + i0
× e−ip(x−y), (25)

where the i0 in the denominator means the limit of iε for ε → +0, and its purpose is to

regularizes the integration over the poles along the mass shells p0 = ±
√

p2 +m2. There

are different ways to regularize the poles, but this particular regulator corresponds to the

Feynman propagator.

In light of eqs. (24) and (25), the Dirac propagator becomes

SFαβ(x− y) = +(i 6∂ +m)αβ

∫
d4p

(2π)4
i

p2 −m2 + i0
× e−ip(x−y)

=

∫
d4p

(2π)4
i(6p+m)αβ
p2 −m2 + i0

× e−ip(x−y).
(26)

Furthermore, using

(6p+m)× (6p−m) = 6p 6p − m2 = (p2 −m2)× 14×4 , (27)

we may rewrite

(6p+m)αβ
p2 −m2 + i0

=
(6p+m− i0)αβ
p2 − (m− i0)2

=

(
1

6p−m+ i0

)
αβ

, (28)

so the Feynman propagator for the Dirac field becomes

SFαβ(x− y) =

∫
d4p

(2π)4

(
i

6p−m+ i0

)
αβ

× e−ip(x−y) . (29)

Naturally, this propagator is a Green’s function of the Dirac equation,

(i 6∂ −m)αβS
F
βγ(x− y) = iδ(4)(x− y)× δαγ . (30)
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Indeed,

(i 6∂ −m)αβ S
F
βγ(x− y) = (i 6∂ −m)αβ × (i 6∂ +m)βγ G

F (x− y)

= ((∂2 +m2)× 1)αγ G
F (x− y)

= δαγ × (∂2 +m2)GF (x− y)

= δαγ × iδ(4)(x− y).

(31)
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