
Fermionic Algebra and Fock Space

Earlier in class we saw how the harmonic-oscillator-like bosonic commutation

relations
[

âα, âβ

]

= 0,
[

â†α, â
†
β

]

= 0,
[

âα, â
†
β

]

= δα,β (1)

give rise to the bosonic Fock space in which the oscillator modes α correspond to

the single-particle quantum states |α〉. In this note, we shall see how the fermionic

anti-commutation relations

{

âα, âβ

}

= 0,
{

â†α, â
†
β

}

= 0,
{

âα, â
†
β

}

= δα,β (2)

give rise to the fermionic Fock space. Again, the modes α will correspond to the

single-particle quantum states. For simplicity, I will assume discrete modes — for

example, momenta (and spins) of a free particle in a big but finite box.

Hilbert Space of a Single Fermionic Mode

A single bosonic mode is equivalent to a harmonic oscillator; the commutation

relation [â, â†] = 1 gives rise to an infinite-dimensional Hilbert space spanning states

|n〉 for n = 0, 1, 2, 3, . . . ,∞. A single fermionic mode is different — its Hilbert space

spans just two states, |0〉 and |1〉. In accordance with the Fermi statistics, multiple

quanta in the same mode are not allowed.

To see how this works, note that there are three non-trivial anticommutation

relations for a single pair of creation and annihilation operators, namely

ââ† + â†â = 1 (3)

and also

{â, â} = {â†, â†} = 0 ⇐⇒ ââ = â†â† = 0. (4)

For the bosons we had defined the number-of-quanta operator as n̂ = â†â, while the

product of â and â† in the opposite order was ââ† = n̂ + 1. For the fermions we also
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define the number-of-quanta operator as n̂ = â†â, but now the product of â and â†

in the opposite order is ââ† = 1− n̂. Consequently, for the fermions

n̂(1− n̂) = â†âââ† = 0 because ââ = 0, (5)

which means that all the eigenvalues of n̂ must obey n(1− n) = 0. This immediately

gives us the Pauli principle: the only allowed occupation numbers for the fermions

are n = 0 and n = 1.

The algebra of the fermionic creation / annihilation operators closes in the two-

dimensional Hilbert space spanning one |n = 0〉 state and one |n = 1〉 state. Specifi-
cally,

â |0〉 = 0, (6.a)

â† |0〉 = |1〉 , (6.b)

â |1〉 = |0〉 , (6.c)

â† |1〉 = 0, (6.d)

or in matrix notations

â =

(

0 1

0 0

)

, â† =

(

0 0

1 0

)

for |0〉 =

(

1

0

)

, |1〉 =

(

0

1

)

. (7)

These matrices obviously obey the anticommutation relations (3) and (4). Less obvi-

ously, there are no other solutions for the fermionic algebra. To prove that, we start

by noting that â(1− n̂) = âââ† = 0 (because ââ = 0) and â†n̂ = â†â†â = 0 (because

â†â† = 0). Also, by definition of the eigenstates |0〉 and |1〉 of n̂, |1〉 = n̂ |1〉 and

|0〉 = (1− n̂) |0〉. Consequently,

â |0〉 = â(1− n̂) |0〉 = 0, (6.a)

â† |1〉 = â†n̂ |1〉 = 0. (6.d)
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Next, we check that â† |0〉 and â |1〉 are eigenstates of n̂ with respective eigenvalues

1 and 0 as in eqs. (6,b–c):

(n̂ − 1)
(

â† |0〉
)

= −ââ†â† |0〉 = 0 because â†â† = 0,

(n̂ − 0)
(

â |1〉
)

= â†ââ |1〉 = 0 because ââ = 0.
(8)

This means that â† |0〉 ∝ some |1〉 and â |1〉 ∝ some |0〉, but we need to make sure

that applying â to â† |0〉 we get back to the same state |0〉 we stated from, and likewise

applying â† to â |1〉 brings us back to the original |1〉:

â
(

|1〉 = â† |0〉
)

= ââ† |0〉 = (1− n̂) |0〉 = same |0〉 ,
â†
(

|0〉 = â |1〉
)

= â†â |1〉 = n̂ |1〉 = same |1〉 .
(9)

Finally, to make sure there are no numerical factors in eqs. (6,b–c) let’s check the

normalization: if |1〉 = â† |0〉 then 〈1|1〉 = 〈0| ââ† |0〉 = 〈0| (1− n̂) |0〉 = 1× 〈0|0〉 and
likewise, if |0〉 = â |1〉 then 〈0|0〉 = 〈1| â†â |1〉 = 〈1| n̂ |1〉 = 1 × 〈1|1〉. In other words,

both eqs. (6,b–c) as written are consistent with normalized states 〈0|0〉 = 〈1|1〉 = 1.

Multiple Fermionic Modes

Now consider multiple fermionic creation and annihilation operators â†α and âα

that are hermitian conjugates of each other and satisfy the anti-commutation rela-

tions (2). For each mode α we define the occupation number operator

n̂α
def
= â†αâα . (10)

All these operators commute with each other; moreover, each n̂α commutes with

creation and annihilation operators for all the other modes β 6= α. Indeed, using the

Leibniz rules for commutators and anti-commutators

[A,BC] = [A,B]C + B[A,C] = {A,B}C − B{A,C},
[AB,C] = A[B,C] + [A,C]B = A{B,C} − {A,C}B,
{A,BC} = [A,B]C + B{A,C} = {A,B}C − B[A,C],

{AB,C} = A[B,C] + {A,C}B = A{B,C} − [A,C]B,

(11)
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we obtain

[

n̂α, âβ
]

=
[

â†αâα, âβ
]

= â†α
{

âα, âβ
}

−
{

â†α, âβ
}

âα = â†α × 0 − δαβ × âα

= −δαβ × âβ → 0 for β 6= α, (12)
[

n̂α, â
†
β

]

=
[

â†αâα, â
†
β

]

= â†α
{

âα, â
†
β

}

−
{

â†α, â
†
β

}

âα = â†α × δαβ − 0× âα

= +δαβ × âβ → 0 for β 6= α, (13)
[

n̂α, â
†
β âγ
]

= â†β
[

n̂α, âγ
]

+
[

n̂α, â
†
β

]

âγ = −â†β × δαγ âγ + δαβ â
†
β × âγ

=
(

δαβ − δαγ
)

â†β âγ → 0 for β = γ, (14)
[

n̂α, n̂β
]

=
[

n̂α, â
†
β âβ
]

= 0. (15)

The fact that all the n̂α commute with each other allows us to diagonalize all of

them at once. This gives us the occupation-number basis of states |set of all nα〉 for
the whole Hilbert space of the theory. Similar to the bosonic case, we may use the

â†α and âα operators to raise or lower any particular nα without changing the other

occupation numbers nβ ; this means that all the occupation numbers may take any

allowed values independently from each other. However, the only allowed values of

the fermionic occupation numbers are 0 and 1 — multiple quanta in the same mode

are not allowed.

Note that for a finite set of M modes the fermionic Hilbert space has a finite

dimension 2M . This fact is important for understanding the ground state degeneracies

of fermionic fields in some non-trivial backgrounds that have zero-energy fermionic

modes: For M zero modes, the ground level of the whole QFT has 2M degenerate

states.

Fermionic Fock Space

Now suppose there is an infinite but discrete set of fermionic modes α correspond-

ing to some 1–particle quantum states |α〉 with wave functions φα(x). (By abuse of

notations, I am including the spin and the other non-spatial quantum numbers into
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x = (x, y, z, spin, etc.).) In this case, the fermionic Hilbert space

F =
⊗

α

Hmodeα (spanning |nα = 0〉 and |nα = 1〉) (16)

has infinite dimension and we may interpret is as the Fock space of arbitrary number

of identical fermions. Indeed, let the operator

N̂ =
∑

α

n̂α (17)

count the net number of fermionic quanta in all the modes, N = 0, 1, 2, 3 . . . ,∞. Let’s

reorganize F into the eigenblocks of N̂ :

F =
∞
⊕

N=0

HN = H0 ⊕H1 ⊕H2 ⊕H3 ⊕ · · · . (18)

The H0 block here spans a unique state with N = 0, namely the vacuum state |vac〉 =
|all nα = 0〉. The H1 block spans states with a single nα = 1 while all the other nβ =

0. Similar to the bosonic case, we may identify such states |nα = 1; other n = 0〉 =
â†α |vac〉 with the single-particle states |α〉 and hence the H1 block of F with the

Hilbert space of a single particle.

The H2 block of F spans states

∣

∣nα = nβ = 1; other n = 0
〉

= â†αâ
†
β |vac〉 (19)

with α 6= β and only such states — the fermionic Fock space does not allow states

|nα = 2; other n = 0〉 with doubly occupied modes. Moreover, since the creation

operators â†α and â†β anti-commute with each other, exchanging α↔ β results in the

same physical state but with an opposite sign. Consequently, the occupation numbers
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define the fermionic state only up to an overall sign; to be more precise, we define

|α, β〉 def
= â†β â

†
α |vac〉 = − |β, α〉 . (20)

Likewise, the H3 block spans states

|α, β, γ〉 = â†γ â
†
β â

†
α |vac〉 (21)

for 3 different modes α, β, γ; the H4 block spans states

|α, β, γ, δ〉 = â†δâ
†
γ â

†
β â

†
α |vac〉 (22)

for 4 differentmodes α, β, γ, δ, etc., etc. In all cases, the order of the modes α, β, γ, . . .

does not matter physically but affects the overall sign of the state,

|any permutation of α, β, . . . , ω〉 = |α, β, . . . , ω〉 × (−1)parity of the permutation. (23)

Thus, each HN (for N ≥ 2) is a Hilbert space of N identical Fermions.

A system of two identical fermions has an antisymmetric wave-function of two

arguments, ψ(x1,x2) = −ψ(x2,x1). A complete basis for such wavefunctions can be

made from antisymmetrized tensor products of single-particle wave-functions

φαβ(x1,x2) =
φα(x1)φβ(x2) − φβ(x1)φα(x2)√

2
= −φαβ(x2,x1). (24)

Note that such wave functions are not only antisymmetric in x1 ↔ x2 but also

separately antisymmetric in α ↔ β, φβα(x1,x2) = −φαβ(x1,x2), so we may identify

them as wave functions of two-fermions states |α, β〉 = â†β â
†
α |vac〉 = − |β, α〉 ∈ H2.
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Likewise, a wavefunction of N identical fermions is totally antisymmetric in its

N arguments,

ψ(x1,x2, . . . ,xN ) = ψ(any permutation of x1,x2, . . . ,xN )×(−1)parity of permutation.

(25)

A complete basis for such wavefunctions obtains from totally antisymmetrized prod-

ucts of N different single-particle wave-functions

φα1,...,αN
(x1, . . . ,xN ) =

1√
N !

all permutations
of (α1,...,αN)
∑

(α̃1,...,α̃N )

φα̃1
(x1)× · · · × φα̃N

(xN )× (−1)parity

=
1√
N !

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φα1
(x1) φα2

(x1) · · · φαN
(x1)

φα1
(x2) φα2

(x2) · · · φαN
(x2)

...
...

. . .
...

φα1
(xN ) φα2

(xN ) · · · φαN
(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(26)

The determinant here — called the Slater determinant — is properly antisymmetric

in (x1, . . . ,xN ), and it’s also antisymmetric with respect to the single-particle states

(α1, . . . , αN ), which allows us to identify it as the wave-function of the N -fermion

state

|α1, α2, . . . , αN 〉 = â†αN
· · · â†α2

â†α1
|vac〉 ∈ NN . (27)

To complete the wave-function picture of the Fermionic Fock space, let me spell

out the action of the creation operators â†α and the annihilation operators âα. For any

N -fermions state |N ;ψ〉 with a totally-antisymmetric wave function ψ(x1, . . . ,xN ),

the state |N + 1;ψ′〉 = â†α |N ;ψ〉 has a totally antisymmetric function of N + 1 vari-

ables

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1
∑

i=1

(−1)N+1−iφα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1) (28)

while the state |N − 1, ψ′′〉 = âα |N,ψ〉 has a totally antisymmetric function of N −1
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variables

ψ′′(x1, . . . ,xN−1) =
√
N

∫

d3xN φ∗α(xN )× ψ(x1, . . . ,xN−1,xN ). (29)

The proof of these formulae is left out as an optional exercise to the students.

Thanks to the relations (29) and (28), the Fock-space formulae for the additive

one-body operators work similarly to the bosonic case: If in N-fermion Hilbert spaces

Âtot =
N
∑

i=1

Â1(i
th) (30)

where each Â1(i
th) acts only on the ith particle, then in the Fock space

Âtot =
∑

α,β

〈α| Â1 |β〉 × â†αâβ . (31)

For example, for the free non-relativistic electrons in a box with α = (p, s) we have

Ĥtot =
∑

p,s

p2

2m
× â†

p,sâp,s ,

P̂tot =
∑

p,s

p× â†
p,sâp,s ,

Ŝtot =
∑

p,s,s′

〈

1
2 , s

′
∣

∣ Ŝ
∣

∣

1
2 , s
〉

× â†
p,s′ âp,s .

(32)

Likewise, the two-body additive operators that act in N -fermion spaces as

B̂tot = 1
2

∑

i6=j

B̂2(i
th, jth) (33)

in the Fock space become

B̂tot = 1
2

∑

α,β,γ,δ

Bα,β,γ,δ × â†αâ
†
β âδ âγ 〈〈 note the order! 〉〉

where Bα,β,γ,δ = (〈α| ⊗ 〈β|) B̂2 (|γ〉 ⊗ |δ〉) .
(34)
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For example, a spin-blind potential V2(x1 − x2) becomes

V̂tot = 1
2

∑

i6=j

V2(xi − xj)

=
1

2L3

∑

q

W (q)
∑

p1,p2

∑

s1,s2

â†
p1+q,s1 â

†
p2−q,s2âp2,s2 âp1,s1

where W (q) =

∫

d3xV2(x)e
−iqx.

(35)

Note that while the formulae for this operator in the bosonic and the fermionic Fock

spaces have similar forms, the actual operators are quite different because the two

Fock spaces have different algebras of the creation and annihilation operators and

different quantum states (symmetric vs. antisymmetric). Thus, the physical effect

of similar V2(x1 − x2) potentials for the fermions and for the bosons may be quite

different from each other.

Fermionic Particles and Holes

Consider a system of fermions with a one-body Hamiltonian of the form

Ĥ =
∑

α

Eαâ†αâα + E0 . (36)

When all particle energies Eα are positive, the ground state of the system is the

vacuum state |vac〉 with all nα = 0. In terms of the creation and annihilation op-

erators, |vac〉 can be identified as the unique state killed by all the annihilation op-

erators, âα |vac〉 = 0 ∀α. The excited states of the Hamiltonian (36) are N -particle

states which obtain by applying creation operators to the vacuum, |α1, . . . , αN 〉 =

â†αN · · · â†α1 |vac〉; the energy of such a state is E = E0 + Eαa
+ · · · EαN

> E0.

Now suppose for a moment that all the particle energies Eα are negative instead

of positive. In this case, adding particles decreases the energy, so the ground state of
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the system is not the vacuum but rather the full-to-capacity state

|full〉 = |all nα = 1〉 =
∏

all α

â†α |vac〉 (37)

with energy

Efull = E0 +
∑

all α

Eα . (38)

Never mind whether the sum here is convergent; if it is not, we may add an infinite

constant to the E0 to cancel the divergence. What’s important to us here are the

energy differences between this ground state and the excited states.

The excited states of the system are not completely full but have a few holes.

That is, nα1
= · · · = nαN

= 0 for some N modes (α1, . . . , αN ), while all the other

nβ = 1. The energy of such a state is

E = E0 +
∑

β 6=αa,...,αN

Eβ = E0 +
∑

all β

Eβ −
N
∑

i=1

Eαi
= Efull −

N
∑

i=1

Eαi
> Efull . (39)

In other words, an un-filled hole in mode α carries a positive energy −Eα.

In terms of the operator algebra, the |full〉 state is the unique state killed by all

the creation operators, â†α |full〉 = 0 ∀α. The holes can be obtained by acting on the

|full〉 state with the annihilation operators that remove one particle at a time. Thus,

|1 hole atα〉 =
∣

∣

∣
n̂α = 0; othern = 1

〉

= âα |full〉 (40)

and likewise

|N holes atα1, . . . , αN〉 = âαN
· · · âα1

|full〉 . (41)

Altogether, when the ground state is |full〉, the creation and the annihilation operators

exchange their roles. Indeed, the âα make extra holes in the full or almost-full states

while the â†α operators annihilates those holes by filling them up. Also, the algebraic

definition of the |full〉 and |vac〉 states are related by this exchange: âα |vac〉 = 0 ∀α
vs. â†α |full〉 = 0 ∀α.
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To make this exchange manifest, let us define a new family of fermionic creation

and annihilation operators,

b̂α = â†α , b̂†α = âα . (42)

Unlike the bosonic commutation relations (1), the fermionic anti-commutation rela-

tions (2) are symmetric between â and â†, so the b̂α and b̂†α satisfy exactly the same

anti-commutation relations as the âα and â†α,







{

âα, âβ
}

= 0
{

â†α, â
†
β

}

= 0
{

âα, â
†
β

}

= δαβ






⇐⇒







{

b̂α, b̂β
}

= 0
{

b̂†α, b̂
†
β

}

= 0
{

b̂α, b̂
†
β

}

= δαβ






. (43)

Physically, the b̂†α operators create holes while the b̂α operators annihilate holes,

and the holes obey exactly the same Fermi statistics as the original particles. In

condensed-matter terminology, the holes are quasi-particles, but the only distinction

between the quasi-particles and the true particles is that the later may exist out-

side the condensed matter. When viewed from the inside of condensed matter, this

distinction becomes irrelevant.

Anyhow, from the hole point of view, the |full〉 state is the hole vacuum — the

unique state with no holes at all, algebraically defined by b̂α |full〉 = 0 ∀α. The exci-

tations are N -hole states obtained by acting with hole-creation operators b̂†α on the

hole-vacuum, |holes atα1, . . . , αN〉 = b̂†αN · · · b̂†α1
|full〉. And the Hamiltonian opera-

tor (36) of the system becomes

Ĥ = E0 +
∑

α

Eα
(

â†αâα = b̂αb̂
†
α = 1− b̂†αb̂α

)

= Efull +
∑

α

(

−Eα
)

b̂†αb̂α ,
(44)

in accordance with individual holes having positive energies −Eα > 0.
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Quantum Numbers of the Holes

Thus far, all I had assumed about the one-particle states |α〉 corresponding to

modes α is that they have definite energies Eα. But in most cases, they also have

definite values of some other additive quantities, such as momentum pα (or lattice

momentum, defined modulo ummklapp), spin (or rather Sz
α), electric charge, etc.,

etc. For all such quantities, a hole has exactly opposite quantum numbers from the

missing fermion. Indeed,

â†αâα = 1 − b̂†αb̂α =⇒ Â = Aempty +
∑

α

Aαâ
†
αâα = Afull +

∑

α

(−Aα)b̂
†
αb̂α ,

(45)

thus

Ĥ = Efull +
∑

α

(

−Eα
)

b̂†αb̂α ,

P̂net = Pfull +
∑

α

(

−pα

)

b̂†αb̂α ,

Ŝz
net = Sz

full +
∑

α

(

−Sz
α

)

b̂†αb̂α ,

Q̂net = Qfull +
∑

α

(

−q = +e
)

b̂†αb̂α ,

(46)

etc., etc. (On the last line I have assumed the original fermions were electrons whose

electric charge is q = −e, so the holes have charge +e.) The physics behind all these

formulae is very simple: creating a hole in a mode α of momentum pα means removing

a fermion carrying that momentum, so the net momentum of the system changes by

−pα, which we interpret as the hole having momentum −pα — and likewise for the

spin, energy, electric charge, and other quantum number of the holes.

Quite often we use the additive quantum numbers such as p and s = Sz to label

the one particles states, |α〉 = |p, s〉. In such cases it is convenient to label the holes

by their own quantum numbers rather than the QN of the missing fermions, so we

define the hole creation and annihilation operators as

b̂p,s = â†−p,−s , b̂†p,s = â−p,−s . (47)

12



This definition leads to

P̂net =
∑

p,s

(+p)b̂†
p,sb̂p,s and Ŝz

net =
∑

p,s

(+s)b̂†
p,sb̂p,s (48)

— assuming Pfull = 0 and Sz
full = 0, — but it does not change the sign of the holes’

electric charge, thus

Q̂net = Qfull +
∑

p,s

(

−q = +e
)

b̂†
p,sb̂p,s . (49)

Fermi Sea

Now consider a more general fermionic system where the energies Eα take both

signs: negative for some modes α but positive for others. For example, the free-energy

operator of the free fermion gas with a positive chemical potential µ = (p2f/2m)

Ĥ =
∑

p,s

(

Ep,s =
p2

2m
− µ

)

â†p,sâp,s , (50)

has negative Ep,s for momenta inside the Fermi sphere (|p| < pf ) but positive Ep,s
for momenta outside that sphere (|p| > pf ) For this system the ground state is the

Fermi sea where

np,s = Θ(|p| < pF ) =

{

1 for |p| < pf ,

0 for |p| > pf .
(51)

In terms of the creation and annihilation operators, the Fermi sea is the state

|FS〉 =

|p|<pf only
∏

p,s

â†
p,s |vac〉 (52)

which satisfies

â
p,s |FS〉 = 0 for |p| > pf but â†

p,s |FS〉 = 0 for |p| < pf . (53)

We may treat this state as a quasi-particle vacuum if we redefine all the operators
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killing the |FS〉 as annihilation operators. Thus, we define

b̂
p,s = â†−p,−s , b̂†

p,s = â−p,−s for |p| < pF only (54)

but keep the original âp,s and â
†
p,s operators for momenta outside the Fermi

surface. Despite the partial exchange, the complete set or creation and annihilation

operators satisfies the fermionic anticommutation relations:

all {â, â} = {b̂, b̂} = {â, b̂} = 0,

all {â†, â†} = {b̂†, b̂†} = {â†, b̂†} = 0,

all {â, b̂†} = {b̂†, â} = 0,

(55)

— provided we restrict the b̂p,s and the b̂†p,s to |p| < pf only and the âp,s and the â†p,s

to |p| > pf only — while

{

âp,s, â
†
p′,s′

}

= δp,p′δs,s′ and
{

b̂p,s, b̂
†
p′,s′

}

= δp,p′δs,s′ . (56)

The Fermi sea |FS〉 is the quasi-particle vacuum state of these fermionic operators

— it is killed by all the annihilation operators âp,s and b̂p,s in the set. The two

types of creation operators â†p,s and b̂†p,s create two distinct types of quasi-particles

— respectively, the extra fermions above the Fermi surface and the holes below the

surface. Both types of quasi-particles have positive energies. Indeed, in terms of our

new fermionic operators, the Hamiltonian becomes

Ĥ = EFS +

|p|>pf only
∑

p,s

(

p2

2m
− µ > 0

)

×â†
p,sâp,s +

|p|<pf only
∑

p,s

(

µ− p2

2m
> 0

)

×b̂†
p,sb̂p,s .

(57)
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Graphically,

p

QP energy

holes

free fermions

pf

Besides energies, all the quasi-particles have definite momenta, spins Sz, and charges,

P̂tot =

|p|>pf only
∑

p,s

p× â†
p,sâp,s +

|p|<pf only
∑

p,s

p× b̂†
p,sb̂p,s ,

Ŝz
tot =

|p|>pf only
∑

p,s

s× â†
p,sâp,s +

|p|<pf only
∑

p,s

s× b̂†
p,sb̂p,s ,

Q̂tot =

|p|>pf only
∑

p,s

(−e)× â†p,sâp,s +

|p|<pf only
∑

p,s

(+e)× b̂†p,sb̂p,s + QFS .

(58)

Interacting Fermions

Besides the free-fermion gas, the particle-hole formalism is very useful for many

interacting-fermion systems such as atoms, nuclei, or condensed matter — especially

the semiconductors. In the interacting systems, the ground state is quite complicated,

but the simple excitations can be described in terms of a few extra particles and/or

holes created and annihilated by the fermionic operators — â†α and âα for the extra

particles, and b̂†α and b̂α for the holes. Thus

Ĥ = Eground +

extra

particles
∑

α

(Eα−µ > 0)â†αâα +

holes
∑

α

(µ−Eα > 0)b̂†αb̂α + Ĥinteractions . (59)

while the creation / annihilation operators obey the standard fermionic anticommu-
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tation relations

{âα, â†β} = {b̂α, b̂†β} = δα,β ,

all other {∗, ∗} = 0.
(60)

Due to interactions between the fermions already existing in the ground state, the â†α

and âα operators not only create / annihilate an extra fermion but also adjust the state

of the existing fermions to accommodate for the extra particle, and likewise for the b̂†α

and b̂α operators creating / annihilating a hole. Consequently, the relation between

these operators operators and the operators creating / annihilating the standalone

fermions from the vacuum is quite complicated. But fortunately, we rarely need such

relations. All we usually need are the anti-commutation relations (60), the fact that

the ground state is annihilated by all the âα and b̂α operators, the quantum numbers

of the extra particles and the holes, and their energies Eα.

Of particular importance are is the spectrum of fermion energies Eα. In atomic

and nuclear physics it determines the shell structure of the atom/nucleus, while in

condensed matter it distinguishes between metals, semi-metals, semiconductors, and

insulators:
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Relativistic Electrons and Positrons.

Now consider a free Dirac spinor field Ψ̂α(x), for example the electron field. (Note

change of notations: from now on, α, β, . . . are Dirac indices running from 1 to 4 rather

than the modes of fermionic creation and annihilation operators.) As I explained last

lecture (see also my notes on Dirac spinors, Dirac equation, and Dirac fields), the

Hamiltonian operator for a free Dirac spinor field is

Ĥ =

∫

d3x Ψ̂†
αDαβΨ̂β (61)

where

Dαβ =
(

−iγ0~γ · ∇ + γ0m
)

αβ
(62)

is the differential operator which acts as one-particle Hamiltonian in the coordinate

basis. Apart from the specific form of this differential operator, the Hamiltonian (61)

has a similar form to the Hamiltonian of a non-relativistic field theory, so at first

blush we may think of Ψ̂α(x) as a 4–component annihilation field while Ψ̂†
α(x) is a

4–component creation field.

To expand such fields into the annihilation operators â(p, . . .) and the creation

operators â†(p, . . .), we simply transform to the eigenbasis of the differential opera-

tor (62). First, we go to the momentum basis, where D reduces to a 4× 4 matrix in

Dirac indices,

Dαβ(p) =
(

γ0~γ · p + γ0m
)

αβ
. (63)

The eigenvalues of this matrix are (+Ep,+Ep,−Ep,−Ep) where Ep = +
√

p2 +m2,

so let me label the corresponding eigenvectors Uα(p,±, s) by the momentum p, the

± sign of energy, and some other index s = ±1
2 (for example, the spin state) to

distinguish between the degenerate eigenstates. Let’s normalize the eigenvectors to

U†(p,±, s)U(p,±′, s′) = 2Ep × δ±,±′δs,s′ ; (64)

this will help with the relativistic normalization of the creation / annihilation opera-

tors.
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Next, we define (in the Schrödinger picture)

â(p,±, s) =

∫

d3x e−ipxU†(p,±, s)Ψ̂(x),

â†(p,±, s) =

∫

d3x e+ipxΨ̂†(x)U(p,±, s),
(65)

so the reverse transform gives the expansion of the fields into the â and â† operators,

Ψ̂α(x) =

∫

d3p

(2π)3
1

2Ep

∑

±

∑

s

e+ipxUα(p,±, s)× â(p,±, s),

Ψ̂†
α(x) =

∫

d3p

(2π)3
1

2Ep

∑

±

∑

s

e−ipxU∗
α(p,±, s)× â†(p,±, s).

(66)

Note: the 1/2Ep factor in this expansion stems from the 2Ep factor in the normal-

ization (64) of the Uα eigenvectors.

The anticommutation relations for the â and â† operators follow from the anti-

commutation relations for the fermionic fields. In the Schrödinger picture (or at equal

times in other pictures), we have

{

Ψ̂α(x), Ψ̂β(y)
}

= 0,
{

Ψ̂†
α(x), Ψ̂

†
β(y)

}

= 0,
{

Ψ̂α(x), Ψ̂
†
β(y)

}

= δαβδ
(3)(x− y),

(67)

hence

{â(p,±, s), â(p′,±′, s′)} = 0,

{â†(p,±, s), â†(p′,±′, s′)} = 0,

{â(p,±, s), â†(p′,±′, s′)} = 2Ep × (2π)3δ(3)(p− p′)× δ±,±′δs,s′

(68)
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where the 2Ep factor again stems from the Uα(p,±, s) normalization (64). Indeed,

{â(p,±, s), â†(p′,±′, s′)} =

∫

d3x

∫

d3y e−ipxU∗
α(p,±, s)× e+ip′

yUβ(p
′,±′, s′)×

×
({

Ψ̂α(x), Ψ̂
†
β(y)

}

= δαβδ
(3)(x− y)

)

=

∫

d3x e−i(p−p
′)x U∗

α(p,±, s)Uα(p
′,±′, s′)

= (2π)3δ(3)(p′ − p)× U†(p,±, s)U(p,±′, s′)

= (2π)3δ(3)(p′ − p)× 2Ep δ±,±′δs,s′ .
(69)

Finally, the Dirac fields’ Hamiltonian (61) becomes

Ĥ =

∫

d3p

(2π)3
1

2Ep

∑

±

∑

s

(±Ep) â
†(p,±, s)â(p,±, s). (70)

Note both positive and negative energy modes in this Hamiltonian. Consequently,

the ground state is the Fermi-sea-like Dirac sea |DS〉 where all the negative-energy

modes are filled while the positive-energy modes are empty,

p

E

empty

filled
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The Dirac sea state is annihilated by the â(p,+, s) and the â†(p,−, s) operators,

so both types of the operators should be treated as the annihilation operators. The

â(p,+, s) operators annihilate the physical electrons e− (which always have positive

energies) while the â†(p,−, s) operators annihilate the holes in the Dirac sea — which

physically act as the electron anti-particles, the positrons e+.

Following the usual particle-hole formalism, we re-define the creation / annihila-

tion operators according to

âp,s = â(p,+, s) (annihilates an electron),

â†p,s = â†(p,+, s) (creates an electron),

b̂p,s = â†(−p,−,−s) (annihilates a positron),

b̂†p,s = â(−p,−,−s) (creates a positron),

(71)

so that:

• All these operators obey the fermionic anticommutation relations;

• The Dirac sea state acts as the physical vacuum, so it is killed by all the

annihilation operators, both â(p, s) |DS〉 = 0 and b̂(p, s) |DS〉 = 0;

• All the physical particles — both the electrons and the positrons — have positive

energies +Ep, thus

Ĥ =

∫

d3p

(2π)3
1

2Ep

∑

s

(

+Epâ
†
p,sâp,s + Epb̂

†
p,sb̂p,s

)

+ const. (72)

Finally, let’s re-express the quantum fields in terms of the operators creating /

annihilating the physical electrons and positrons. Let’s define

uα(p, s) = Uα(p,+, s), vα(p, s) = Uα(−p,−,−s); (73)
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then the expansions (66) become

Ψ̂α(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

(

e+ipxuα(p, s)× âp,s + e+ipxvα(−p,−s)× b̂†−p,−s

)

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e+ipxuα(p, s)× â
p,s + e−ipxvα(p, s)× b̂†

p,s

)

,

Ψ̂†
α(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ipxu∗α(p, s)× â†p,s + e−ipxv∗α(−p,−s)× b̂−p,−s

)

=

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ipxu∗α(p, s)× â†
p,s + e+ipxv∗α(p, s)× b̂

p,s

)

.

(74)

Note: the Ψ̂ field comprises the operators annihilating the electrons or creating the

positrons, so its net effect on the electric charge is always ∆Q = +e, while the Ψ̂†

field comprises the operators creating the electrons or annihilating the positrons, so

its net effect on the electric charge is always ∆Q = −e.

The expansions (74) work in the Schrödinger picture of the quantum theory. In

the Heisenberg picture we incorporate the time dependence according to the usual

formulae for the free fields:
[

â
p,s, Ĥ ] = + Ep × â

p,s =⇒ â
p,s(t) = e−iEpt × â

p,s(0),
[

â†
p,s, Ĥ ] = − Ep × â†

p,s =⇒ â†
p,s(t) = e+iEpt × â†

p,s(0),
[

b̂
p,s, Ĥ ] = + Ep × b̂

p,s =⇒ b̂
p,s(t) = e−iEpt × b̂

p,s(0),
[

b̂†
p,s, Ĥ ] = − Ep × b̂†

p,s =⇒ b̂†
p,s(t) = e+iEpt × b̂†

p,s(0),

(75)

hence

Ψ̂α(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

(

e−ipxuα(p, s)× â
p,s + e+ipxvα(p, s)× b̂†

p,s

)p0=+Ep

,

Ψ̂†
α(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

(

e+ipxu∗α(p, s)× â†p,s + e−ipxv∗α(p, s)× b̂p,s

)p0=+Ep

.

(76)

Or in terms of the Ψ̂ = Ψ̂†γ0,

Ψ̂α(x) =

∫

d3p

(2π)3
1

2Ep

∑

s

(

e+ipxūα(p, s)× â†p,s + e−ipxv̄α(p, s)× b̂p,s
)p0=+Ep

. (77)
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