
Free Fields, Harmonic Oscillators, and Identical Bosons

A free quantum field and its canonical conjugate are equivalent to a family of harmonic

oscillators (one oscillator for each plane wave), which is in turn equivalent to a quantum

theory of free identical bosons. In this note, I will show how all of this works for the

relativistic scalar field ϕ̂(x) and its conjugate π̂(x). And then I will turn around and show

that a quantum theory of any kind of identical bosons is equivalent to a family of oscillators.

(Harmonic for the free particles, non-harmonic if the particles interact with each other.)

Moreover, for the non-relativistic particles, the oscillator family is in turn equivalent to a

non-relativistic quantum field theory.

In this note we shall work in the Schrödinger picture of Quantum Mechanics because

it’s more convenient for dealing with the eigenstates and the eigenvalues. Consequently, all

operators — including the quantum fields such as ϕ̂(x) — are time-independent.

From Relativistic Fields to Harmonic Oscillators

Let us start with the relativistic scalar field ϕ̂(x) and its conjugate π̂(x); they obey the

canonical commutation relations

[ϕ̂(x), ϕ̂(x′)] = 0, [π̂(x), π̂(x′)] = 0, [ϕ̂(x), π̂(x′)] = iδ(3)(x− x′) (1)

and are governed by the Hamiltonian

Ĥ =

∫
d3x

(
1
2 π̂

2(x) + 1
2(∇ϕ̂(x))2 + 1

2m
2ϕ̂2(x)

)
. (2)

We want to expand the fields into plane-wave modes ϕ̂k and π̂k, and to avoid technical

difficulties with the oscillators and their eigenstates, we want discrete modes. Therefore, we

replace the infinite x space with a finite but very large box of size L × L × L, and impose

periodic boundary conditions — ϕ̂(x+L, y, z) = ϕ̂(x, y +L, z) = ϕ̂(x, y, z +L) = ϕ̂(x, y, z),

etc., etc. For large L, the specific boundary conditions are unimportant, so I have chosen
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the periodic conditions since they give us particularly simple plane-wave modes

ψk(x) = L−3/2eikx where kx, ky, kz =
2π

L
× an integer. (3)

Expanding the quantum fields into such modes, we get

ϕ̂(x) =
∑
k

L−3/2eikx × ϕ̂k, ϕ̂k =

∫
d3xL−3/2e−ikx × ϕ̂(x),

π̂(x) =
∑
k

L−3/2eikx × π̂k, π̂k =

∫
d3xL−3/2e−ikx × π̂(x).

(4)

A note on hermiticity: The classical fields ϕ(x) and π(x) are real (i.e., their values are real

numbers), so the corresponding quantum fields are hermitian, ϕ̂†(x) = ϕ̂(x) and π̂†(x) =

π̂(x). However, the mode operators ϕ̂k and π̂k are not hermitian; instead, eqs. (4) give us

ϕ̂†k = ϕ̂−k and π̂†k = π̂−k .

The commutation relations between the mode operators follow from eqs. (1), namely

[ϕ̂k, ϕ̂k′ ] = 0, [π̂k, π̂k′ ] = 0, [ϕ̂k, π̂k′ ] = i δk,−k′ . (5)

The first two relations here are obvious, but the third needs a bit of algebra:

[ϕ̂k, π̂k′ ] =

∫
d3x

∫
d3x′ L−3e−ikxe−ik

′x′
× [ϕ̂(x), π̂(x′)]

=

∫
d3x

∫
d3x′ L−3e−ikxe−ik

′x′
× iδ(3)(x− x′)

= i L−3
∫
box

d3x e−ix(k+k′)

= i δk,−k′ .

(6)

Equivalently,

[ϕ̂k, π̂
†
k′ ] = [ϕ̂†k, π̂k′ ] = i δk,k′ , [ϕ̂k, π̂k′ ] = [ϕ̂†k, π̂

†
k′ ] = i δk+k′,0 . (7)
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Now let’s express the Hamiltonian (2) in terms of the modes. For the first term, we have

∫
d3x π̂2(x) =

∫
d3x π̂†(x)π̂(x) =

∫
d3x

∑
k

∑
k′

L−3e−ikxe+ik
′x × π̂†kπ̂k′

=
∑
k,k′

π̂†kπ̂k′ ×

L−3 ∫
box

d3x eix(k
′−k) = δk,k′


=
∑
k

π̂†kπ̂k .

(8)

Similarly, the last term becomes

∫
d3x ϕ̂2(x) =

∑
k

ϕ̂†kϕ̂k , (9)

while in the second term

∇ϕ̂(x) =
∑
k

L−3/2eikx × ik ϕ̂k =
∑
k

L−3/2e−ikx ×−ik ϕ̂†k , (10)

hence ∫
d3x (∇ϕ̂(x))2 =

∑
k

k2 ϕ̂†kϕ̂k . (11)

Altogether, the Hamiltonian (2) becomes

Ĥ =
∑
k

(
1
2 π̂
†
kπ̂k + 1

2(k2 +m2) ϕ̂†kϕ̂k

)
. (12)

Clearly, this Hamiltonian describes a bunch of harmonic oscillators with frequencies ωk =
√
k2 +m2 (in the h̄ = c = 1 units). But since the mode operators are not hermitian,

converting them into creation and annihilation operators takes a little more work then usual:
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We define

âk =
1√
2ωk

(
ωkϕ̂k + i π̂k

)
,

and consequently

â†k =
1√
2ωk

(
ωkϕ̂

†
k − i π̂†k

)
,

â−k =
1√

2ω−k

(
ω−kϕ̂−k + i π̂−k

)
=

1√
2ωk

(
ωkϕ̂

†
k + i π̂†k

)
,

â†−k =
1√

2ω−k

(
ω−kϕ̂

†
−k − i π̂†−k

)
=

1√
2ωk

(
ωkϕ̂k − i π̂k

)
.

(13)

Note that â†k 6= â−k and â−k 6= â†k; instead, we have independent creation and annihilation

operators â†k and âk for every mode k.

The commutations relations between these operators are

[âk, âk′ ] = 0, [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δk,k′ . (14)

Indeed,

[âk, âk′ ] =
1√

4ωω′

(
ωω′ [ϕ̂k, ϕ̂k′ ] + iω′ [π̂k, ϕ̂k′ ] + iω [ϕ̂k, π̂k′ ] − [π̂k, π̂k′ ]

)
=

1√
4ωω′

(
0 + iω′ ×−iδk+k′,0 + iω ×+iδk+k′,0 + 0

)
= δk+k′,0 ×

ω′ − ω√
4ωω′

= 0 because ω′ = ω when k + k′ = 0.

(15)

Similarly, [â†k, â
†
k′ ] = 0. Finally,

[âk, â
†
k′ ] =

1√
4ωω′

(
ωω′ [ϕ̂k, ϕ̂

†
k′ ] + iω′ [π̂k, ϕ̂

†
k′ ] − iω [ϕ̂k, π̂

†
k′ ] + [π̂k, π̂

†
k′ ]
)

=
1√

4ωω′

(
0 + iω′ ×−iδk,k′ − iω ×+iδk,k′ + 0

)
= δk,k′ × ω + ω′√

4ωω′

= δk,k′ because ω′ = ω when k′ = k.

(16)

To re-obtain the field mode operators ϕ̂k and π̂k from the creation and annihilation

operators, let us combine the first and the last equations (13) for the âk and â†−k . Adding
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and subtracting those equations, we find

âk + â†−k =
√

2ωk × ϕ̂k , −iâk + iâ†−k =

√
2

ωk
× π̂k . (17)

Consequently,

ω2ϕ̂†kϕ̂k =
ωk
2
× (â†k + â−k)(âk + â†−k)

=
ωk
2
×
(
â†kâk + â†kâ

†
−k + â−kâk + â−kâ

†
−k

)
,

π̂†kπ̂k =
ωk
2
× (iâ†k − iâ−k)(−iâk + iâ†−k)

=
ωk
2
×
(
â†kâk − â†kâ

†
−k − â−kâk + â−kâ

†
−k

)
,

(18)

hence

ω2ϕ̂†kϕ̂k + π̂†kπ̂k = ωk ×
(
â†kâk + â−kâ

†
−k

)
= ωk ×

(
â†kâk + â†−kâ−k + 1

)
.

(19)

Altogether, the Hamiltonian (12) becomes

Ĥ =
∑
k

1
2ωk ×

(
â†kâk + â†−kâ−k + 1

)
=
∑
k

ωk

(
â†kâk + 1

2

)
. (20)

In light of the commutation relations (14), this Hamiltonian clearly describes an infinite

family of harmonic oscillators, one oscillator for each plane-wave mode k.

Now consider the eigenvalues and the eigenstates of the multi-oscillator Hamiltonian (20).

A single harmonic oscillator has eigenvalues En = ω(n+ 1
2) where n = 0, 1, 2, 3, . . .. For the

multi-oscillator system at hand, each n̂k = â†kâk commutes with all the other n̂k′ , so we may

diagonalize them all at the same time. This gives us eigenstates

|{nk for all k}〉 =
⊗
k

|nk〉 of energy E{nk} =
∑
k

ωk(nk + 1
2). (21)

where each nk is an integer ≥ 0. Moreover, all combinations of the nk are allowed because

the â†k and âk operators can change a particular nk → nk ± 1 without affecting any other
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nk′ . (This follows from [âk, n̂k′ ] = 0 and [â†k, n̂k′ ] = 0 for k′ 6= k.) Thus, the Hilbert space

of the multi-oscillator system — and hence of the free quantum field theory — is a direct

product of Hilbert spaces for each oscillator,

H(QFT) =
⊗
k

H(harmonic oscillator for mode k). (22)

From the Multi-Oscillator System to Identical Bosons

A constant term in the Hamiltonian of a quantum system does not affect its dynamics in

any way, it simply shifts energies of all states by the same constant amount. So to simplify

our analysis of the multi-oscillator system in particle terms, let’s subtract the infinite zero-

point energy E0 =
∑

k
1
2ωk from the Hamiltonian (20), thus

Ĥ → Ĥ − E0 =
∑
k

ωkâ
†
kâk . (23)

I’ll come back to the zero-point energy, but right now let’s focus on other issues.

In the multi-oscillator Hilbert space (22) each occupation number nk is independent from

all others. However, states of finite energy must have finite N =
∑

k nk, so let us re-organize

the Hilbert space into eigenspaces of the N̂ =
∑

k n̂k operator,

H(QFT) =
⊗
k

H(mode k) =
∞⊕
N=0

HN , (24)

and consider what do those eigenspaces look like for different N . For N = 0, the H0 spans

a single state, the vacuum |0〉 = |all nk = 0〉. For N = 1, the H1 spans eigenstates with a

single nk = 1 while all other nk′ = 0. Renaming such eigenstates |nk = 1, othern = 0〉 → |k〉
and noting their energies

E(|k〉) = ωk =
√

k2 +m2 , (25)

we identify the H1 as a Hilbert space of a free relativistic particle with Hamiltonian

Ĥparticle =

√
P̂2 +m2 . (26)

For N > 1, we may have several modes with nk > 0, but for a finite N there can be only

a finite number of such modes. So we rename such a state |k1, . . . ,kN 〉 by listing only the

6



modes k with nk > 0 and repeating each k nk times. For example,∣∣3k, 2k′ , 2k′′ , 1k′′′ , 0everything else
〉

=
∣∣k,k,k,k′,k′,k′′,k′′,k′′′〉 . (27)

In such notations, the HN Hilbert space spans eigenstates |k1,k2, . . . ,kN 〉 labeled by N

modes k1, . . . ,kN (such modes may coincide but do not have to). The energy of such an

eigenstate is

E(|k1,k2, . . . ,kN 〉) = ωk1
+ ωk2

+ · · · + ωkN
, (28)

which allows us to identify the HN as the Hilbert space of N free relativistic particles with

the Hamiltonian

ĤN particles =
N∑
i=1

√
P̂2(ith) + m2 . (29)

However, treating the k1, . . . ,kN momenta of N particles as independent over-counts the

quantum states because the occupation numbers nk do not specify the order in which we

list the modes ki. For example, both |k1,k2〉 and |k2,k1〉 both correspond to the same state∣∣1k1
, 1k2

, 0others
〉
. More generally,

|{nk}〉 = |k1, . . . ,kN 〉 = |any permutation of the k1, . . . ,kN 〉 . (30)

In other words, the N relativistic particles in the HN are identical bosons.

Altogether, we have

H(QFT) =
⊗
k

H(harmonic oscillator #k) =
∞⊕
N=0

H(N identical bosons). (31)

Hilbert spaces of this kind — any number N of identical bosons (or fermions) are known

as Fock spaces. So the Hilbert space of the quantum field is the same as the Fock space of

particles, and the Hamiltonians are also the same:

Ĥ[ϕ̂(x), π̂(x)] =
N̂∑
i=0

√
P̂2
i + m2 . (32)

In other words, the quantum theory of the free field is identical to the quantum theory of (any

number of) free identical bosons. For the theory in question, the field is a relativistic scalar
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ϕ(x) and the bosons are spinless relativistic particles. But in exactly the same manner, the

quantum theory of Maxwell fields Fµν(x) is identical to the quantum theory of (any number

of) photons — which are massless relativistic particles with two polarizations states (per

photon) and obey Bose statistics.

Quantization of field theories with non-quadratic Hamiltonians (and hence non-linear

classical equations of motion) also leads to theories equivalent to theories of quantum par-

ticles, but this time the particles are not free but interact with each other. In relativistic

theories, the interactions also allow for creation and destruction of particles; such processes

have to be described in terms of the Fock space rather than a fixed–N Hilbert space. In

non-relativistic theories, the net particle number N is sometimes conserved, sometimes not,

but even when it is conserved, the Fock-space formalism is often convenient.

Finally, a few words about the zero-point energy E0 =
∑

k
1
2ωk . From the particles’

point of view, E0 is the vacuum energy. It does not affect any properties of the individual

particles or the way they interact with each other, so one usually simply ignores the E0

and proceeds as if it was not there. However, in some situations E0 becomes important:

(1) When one couples a quantum field theory to general relativity, vacuum energy density

becomes the cosmological constant. (2) When a QFT has some variable parameters, the

vacuum energy acts as an effective potential for those parameters. This is important for

cosmology of the early Universe, and also for the Casimir effect. Note that while the E0

itself is infinite (except in supersymmetric theories where infinities cancel out between the

bosonic and fermionic fields), it can be written as a sum of an infinite constant and a finite

part which changes with parameters by a finite amount ∆E0 — it’s the finite part that’s

responsible for the effective potential and for the Casimir effect.

From Identical Bosons back to Creation and Annihilation Operators.

Quantum Mechanics of many identical bosons can be done in the wave-function formal-

ism, but it’s often convenient to use the formalism of the creation and annihilation operators

in the Fock space. For historical reasons, this formalism is called the “second quantization”,

but this name is misleading: There is no new quantization, just the same old quantum me-

chanics re-written in a new language. In this section, I will develop the second quantization
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formalism for the ordinary non-relativistic particles (for example, helium atoms), although

it works in the same way for all kinds of particles, or even for the quasiparticles such as

phonons.

The Fock space is the Hilbert space of an arbitrary number of identical bosons,

F =
∞⊕
N=0

H(N bosons), (33)

and our first task is to construct the basis of this space which may be interpreted in terms

of occupation numbers nα. Here α’s should label 1-particle quantum states, so we start with

the single-particle Hilbert space H1 and build some kind of a complete orthonormal basis

of states |α〉 with wave-functions φα(x).
?

I assume |α〉 to be eigenstates of some kind of

a 1-particle Hamiltonian, Ĥ1 |α〉 = εα |α〉, but the specific form of the operator Ĥ1 is not

important for our purposes. For simplicity, I also assume the spectrum of α to be discrete.
†

Given a one-particle basis {|α〉}, we may construct a complete basis of the two-particle

Hilbert space H2 using eigenstates of the operator Ĥ2 = Ĥ1(1
st)+ Ĥ1(2

nd). Naively, this op-

erator has eigenstates |α〉⊗|β〉 with energies εα+εβ and wave functions φα(x1)×φβ(x2). How-

ever, two identical bosons must have a symmetric wave function φαβ(x1,x2) = φαβ(x2,x1).

Consequently, we must symmetrize:

|α, β〉 = |β, α〉 =


|α〉 ⊗ |β〉 + |β〉 ⊗ |α〉√

2
for β 6= α,

|α〉 ⊗ |α〉 for β = α,

(34)

or in the wave-function Language

φαβ(x1,x2) = φβα(x1,x2) =


φα(x1)φβ(x2) + φβ(x1)φα(x2)√

2
for β 6= α,

φα(x1)φα(x2) for β = α,

(35)

? By abuse of notations, I include spin, isospin, and any other discrete quantum numbers a particle may
have with the x = (x, y, z, spin, etc.).
† A continuum spectrum would lead to the same physics, but we would need more complicated formulae
to handle states with occupation numbers nα > 1 for continuous α.
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Similarly, wave functions of N identical bosons must be totally symmetric,

ψ(x1,x2, . . . ,xN ) = ψ(any permutation of the x1,x2, . . . ,xN ). (36)

To construct a complete basis of such N -particle wave functions, we use eigenstates of the

ĤN =
N∑
i=1

Ĥ1(i
th particle). (37)

Without the symmetry requirement (36), all eigenstates of this Hamiltonian would be of the

form |α〉⊗ |β〉⊗ · · · ⊗ |ω〉, with energies εα + εβ + · · ·+ εω, but because we are in the Hilbert

space of N identical bosons, we must symmetrize such states according to

|α, β, . . . , ω〉 =
|α〉 ⊗ |β〉 ⊗ · · · ⊗ |ω〉 + all distinct permutations of α, β, . . . , ω√

# of distinct permutations
,

φαβ···ω(x1,x2, . . . ,xN ) =
φα(x1)φβ(x2) · · ·φω(xN ) + all distinct permutations of α, β, . . . , ω√

# of distinct permutations
.

(38)

Consequently, the order of the N single-particle labels α, β, . . . , ω of a state (38) does not

matter,

|α, β, . . . , ω〉 = |any permutation of the α, β, . . . , ω〉 , (39)

which means that we may uniquely specify such a state in terms of its occupations numbers

nβ that count how many times each β appears in the list α, β, . . . , ω. For example,

|α, α, α, β, β, γ, γ, δ, ε〉 =
∣∣3α, 2β, 2γ , 1δ, 1ε, 0all others〉 . (40)

Formally,

|α1 . . . , αN 〉 =
∣∣{nβ}〉 where nβ =

N∑
i=1

δαi,β
. (41)

Note that
∑

β nβ = N , so all but a finite number of the occupations numbers must vanish.
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The states (38) are eigenstates of the Hamiltonian (37) in the N -boson Hilbert spaceHN ,

so together they form a complete orthonormal basis of the HN . In terms of the occupation

numbers, this basis comprises states
∣∣{nβ}〉 where nβ are non-negative integers which total

up to N ,
∑

β nβ = N . Removing the latter constraint, we construct a bigger Hilbert space

which spans
∣∣{nβ}〉 with all values of the N =

∑
β nβ. Physically, this space is the Fock

space

F = |vacuum〉 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ · · · =
∞⊕
N=0

HN (42)

of the quantum theory of an arbitrary number N = 0, 1, 2, 3, . . . of identical bosons.

In other words, what we have done thus far is to construct a basis of the entire Fock

space comprising states
∣∣{nβ}〉 with definite occupation numbers. We can think of this basis

as a common eigenbasis of a family of commuting hermitian operators n̂β with eigenvalues

nβ = 0, 1, 2, . . .. Such operators are very useful for extending additive operators such as (37)

to the whole Fock space and for writing them in compact form

Ĥ
∣∣∣
wholeF

=
∑
β

εβn̂β . (43)

Indeed, the operators (37) and (43) have the same eigenstates |α1, · · · , αN 〉 and the same

eigenvalues
∑

β εβnβ = εα1
+ · · ·+ εαN

.

For example, consider the free non-relativistic spinless particles (in a big box). The

single-particle Hamiltonian is Ĥ1 = 1
2mP̂2, so we may identify |α〉 as |p〉. Consequently, the

Fock-space Hamiltonian

Ĥtot =
∑
p

p2

2m
× n̂p (44)

comprises all the net Hamiltonians ĤN =
∑ 1

2mP̂2(i th) for any number N of the particles.

Likewise, the Fock-space net momentum operator

P̂tot =
∑
p

p× n̂p (45)

comprises the net momentum operators P̂N =
∑

i P̂(ith) of N particle systems for any N .
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? ? ?

To construct more interesting operators in the Fock space we need the creation and

the annihilation operators, so our next task is to construct the harmonic-oscillator-like â†α

and âα. We begin this by noticing that in the Fock space, the occupation numbers nβ are

completely independent from each other. That is, given any state
∣∣{nβ}〉 ∈ F , we may

change one particular nα → n′α ± 1 while keeping all the other nβ unchanged, n′β = nβ for

β 6= α, and the state |{n′β}〉 would be a valid state in the Fock space F . This means that

the Fock space is a direct product of single-mode Hilbert spaces,

F =
⊗
β

H(mode β) where H(mode β) spans
∣∣nβ〉 for nβ = 0, 1, 2, 3, . . . . (46)

The Hilbert space of a single mode looks like a Hilbert space of a Harmonic oscillator,

so we may construct oscillator-like creation and annihilation operators according to

â† |n〉 def
=
√
n+ 1 |n+ 1〉 , â |n〉 def

=

{√
n |n− 1〉 for n > 0,

0 for n = 0,
(47)

and hence â†â = n̂ and [â, â†] = 1. Similarly, the direct product of single-mode Hilbert

spaces in eq. (46) looks like a system of many harmonic oscillators, one oscillator for each

mode β. This allows us to construct a whole family of oscillator-like creation and annihilation

operators in the Fock space, namely

â†α
∣∣{nβ}〉 def

=
√
nα + 1

∣∣{n′β = nβ + δαβ}
〉
,

âα
∣∣{nβ}〉 def

=

{√
nα
∣∣{n′β = nβ − δαβ}

〉
for nα > 0,

0 for nα = 0,

n̂α = â†αâα .

(48)

It is easy to see from these definitions that the operators â†α, âα, and n̂α for different modes

α commute with each other, but for the same mode [âα, â
†
α] = 1. Altogether, we have the

bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (49)
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The operators â†α and âα do not commute with the net particle number operator N̂ =
∑

β n̂β.

Instead, [N̂ , â†α] = +â†α, [N̂ , âα] = −âα and hence

N̂ â†α = â†α(N̂ + 1) and N̂ âα = âα(N̂ − 1), (50)

an â†α operator creates a particle while an âα operator annihilates (destroys) a particle.

That’s why the â†α are called the creation operators and the âα are called the annihilation

operators.

Of particular interest to QM of many-particle systems are operator products â†αâβ,

â†αâ
†
β âγ âδ, etc., containing equal numbers of creation and annihilation operators. Such prod-

ucts — and their sums — commute with N̂ and may be used to construct physically inter-

esting operators for systems where the particles are never created or destroyed. For example,

for the free non-relativistic particles (in a big box)

Ĥtot =
∑
p

p2

2m
â†pâp , P̂tot =

∑
p

p â†pâp , (51)

cf. eqs. (44) and (45).

More generally, consider any one-body (i.e., one body at a time) additive operator which

acts on N -particle states as

Âtot(N particles) =
N∑
i=1

Â1(i
th particle) (52)

where Â1 is some kind of a single-particle operator. Let 〈α| Â1 |β〉 be its matrix elements.

Then in the Fock space formalism, the net operator (52) acts as

Âtot =
∑
α,β

〈α| Â1 |β〉 × â†αâβ . (53)

In particular, when the 1-particle states |α〉 are eigenstates of the Â1, this formula reduces

to

Âtot =
∑
α

(eigenvalue)α × â†αâα . (54)

At this point in the argument, the special case (54) should be obvious to you. The more

13



general case (53) including the non-diagonal matrix elements 〈α| Â1 |β〉 is not obvious, but

the proof involves techniques which outside of the main line of our QFT class. So instead

of presenting them in this set of notes, I made a separate set of notes on operators in wave-

function and Fock-space languages. We shall not have time to cover these notes in class, so

I ask you to read them on your own, whenever you have time for this.

In the same set of notes, you will also see that if three single-particle operators Â1, B̂1,

and Ĉ1 are related via commutation relation [Â1, B̂1] = Ĉ1, then the corresponding Fock-

space operators Âtot, B̂tot, and Ĉtot defined according to eq. (53) obey the same commutation

relation [Âtot, B̂tot] = Ĉtot. For example, consider a gas of free atoms with nonzero integer

spin s = 1, 2, . . .. In terms of the creation and annihilation operators, the net spin operator

for the whole gas becomes

Ŝnet =
∑
p

∑
ms,m′

s

〈s,ms| Ŝ1

∣∣s,m′s〉× â†p,ms
âp,m′

s
, (55)

and since the single atom’s spin operator obeys the angular momentum commutation re-

lations [Ŝi1, Ŝ
j
1] = iεijkŜk1 , the net spin operator satisfies the same relations [Ŝinet, Ŝ

j
net] =

iεijkŜknet.

Interactions between particles are described by operators involving two or more particles

at the same time. For example, a two-body potential V2(xi−xi) gives rise to the net potential

operator which acts on a wave functions of N particles as

V̂netΨ(x1, . . . ,xN ) = 1
2

i,j=1,...,N∑
i 6=j

V2(xi − xj)Ψ(x1, . . . ,xN ). (56)

In the Fock-space formalism, this operator becomes

V̂net = 1
2

∑
α,β,γ,δ

Vα,β,γ,δ × â†αâ
†
β âδâγ (57)

where Vα,β,γ,δ are the matrix elements

Vα,β,γ,δ =

∫
dx1

∫
dx2 φ

∗
α(x1)φ

∗
β(x2)× V2(x1 − x2)× φγ(x1)φδ(x2). (58)
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In particular, in the momentum basis |p〉,

Vp′
1,p

′
2,p1,p2

= L−3δp′
1+p′

2,p1+p2
×W (q)

where q = p′1 − p1 = p2 − p′2 and W (q) =

∫
dx e−iqx V2(x),

(59)

hence

V̂net = 1
2L
−3
∑
q

W (q)
∑
p1,p2

â†p1+qâ
†
p2−qâp2

âp1
. (60)

More generally, a two-body additive operator of the form

B̂net(N particles) = 1
2

i,j=1,...,N∑
i 6=j

B̂2(i
th and jth particles) (61)

in the Fock space formalism becomes

B̂net = 1
2

∑
α,β,γ,δ

Bα,β,γ,δ × â†αâ
†
β âδâγ where Bα,β,γ,δ = (〈α| ⊗ 〈β|)B̂2(|γ〉 ⊗ |δ〉). (62)

Note that the matrix elements Bα,β,γ,δ are not symmetrized with respect to particle per-

mutations γ ↔ δ and α ↔ β; instead, the operator product â†αâ
†
β âδâγ takes care of the

symmetrization thanks to âδâγ = âγ âδ and â†αâ
†
β = â†β â

†
α.

Again, the proof of eq. (62) involve techniques I do not wish to develop here, so I present

it in my notes on operators in wave-function and Fock-space languages.

Generalization of the Fock-space formalism to operators involving more than two par-

ticles at the same time is straightforward. Three-body additive operators become sums

of â†αâ
†
β â
†
γaζ âεâδ with appropriate matrix-element coefficients, four-body operators involve

products â†â†â†â†ââââ of four creation and four annihilation operators, etc., etc.

Non-Relativistic Quantum Fields

In the previous section, we defined the creation and the annihilation operators in terms

of a particular basis of single-particle states |α〉. Changing to a new basis {|µ〉} involves a
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linear transform |µ〉 =
∑

α |α〉 × 〈α|µ〉 and hence a similar linear transform of the creation

/ annihilation operators from â†α and âα to â†µ and âµ, namely

â†µ =
∑
α

â†α × 〈α|µ〉 , âµ =
∑
α

âα × 〈µ|α〉 . (63)

Indeed, in the Fock space |α〉 = â†α |0〉 while |µ〉 = â†µ |0〉, so the creation operators transform

exactly like Dirac kets; by Hermitian conjugation, the annihilation operators transform like

Dirac bras. And thanks to unitarity of this transform, the âµ and the â†µ obey the same

bosonic commutation relations (49) as the âα and the â†α.

Of particular importance is the coordinate basis in which the x-labeled operators become

quantum fields. Specifically, the creation field

Ψ̂†(x) ≡ â†x =
∑
α

â†α × φα(x) (64)

which creates a particle at point x, and the annihilation field

Ψ̂(x) ≡ âx =
∑
α

âα × φ∗α(x) (65)

which annihilates a particle at point x. These fields obey the continuous version of the

bosonic commutation relations (49), namely

[
Ψ̂(x), Ψ̂(x′)

]
= 0,

[
Ψ̂†(x), Ψ̂†(x′)

]
= 0,

[
Ψ̂(x), Ψ̂†(x′)

]
= δ(3)(x− x′). (66)

In the non-relativistic many-particle theory, many operators may be expressed in terms of

the creation and annihilation fields as
∫
d3x (something local). For example, the net particle

number operator N̂ becomes

N̂ =
∑
α

â†αâα =

∫
d3x Ψ̂†(x)Ψ̂(x), (67)

which tells us that n̂(x) = Ψ̂†(x)Ψ̂(x) is the local particle density operator. Consequently,
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the potential energy operator for particles interacting with an external potential Ve(x) is

V̂net =

∫
d3xVe(x)× n̂(x) =

∫
d3xVe(x)× Ψ̂†(x)Ψ̂(x). (68)

Similarly, the net momentum operator is

P̂net =
∑
p

p â†pâp =

∫
d3x Ψ̂†(x)

(
−i∇Ψ̂(x)

)
, (69)

and the net non-relativistic kinetic energy operator is

Ĥkin
net =

∑
p

p2

2m
â†pâp =

∫
d3x Ψ̂†(x)

(
−∇2

2m
Ψ̂(x)

)
= +

1

2m

∫
d3x∇Ψ̂†(x) · ∇Ψ̂(x). (70)

Thus, the non-relativistic particles in an external potential Ve(x) but not interacting with

each other have the Fock-space Hamiltonian of the form

Ĥ = Ĥkin
net + V̂net =

∫
d3x

(
1

2m
∇Ψ̂†(x) · ∇Ψ̂(x) + Ve(x)Ψ̂†(x)Ψ̂(x)

)
=

∫
d3x Ψ̂†(x)

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x).

(71)

For this Hamiltonian, the Heisenberg equations for the quantum fields become similar to the

ordinary Schrödinder equations for single-particle wave functions. Indeed, in the Heisenberg

picture of QM, the time-dependent quantum fields satisfy

i
∂

∂t
Ψ̂(x, t) =

[
Ψ̂(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x, t),

−i ∂
∂t

Ψ̂†(x, t) =
[
Ĥ, Ψ̂(x, t)

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂†(x, t).

(72)

Despite the similarity, these are not the true Schrödinger equations of the many-particle sys-

tem because: (1) They apply in the wrong picture of QM (Heisenberg instead of Schrödinger).

(2) The true wave-function ψ(x1, . . . ,xN ; t) of N particles depends on all of their coordinates

x1, . . . ,xN , unlike the quantum field Ψ̂(x, t) which depends on a single x regardless of how

many particles we have (or rather had since Ψ̂ does not preserve N). (3) Adding interac-

tions to the Hamiltonian (71) would make eqs. (72) non-linear, while the true Schrödinger

equations are always linear, no matter what.
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Indeed, let the particles have a two-body interaction potential (56). In terms of the

quantum creation and annihilation fields, the Fock-space two-body potential becomes

V̂int = 1
2

∫
d3x1

∫
d3x2 V2(x1 − x2)× Ψ̂†(x1)Ψ̂

†(x2)Ψ̂(x2)Ψ̂(x1). (73)

Adding this interaction to the free Hamiltonian (71) makes the Heisenberg equations for the

quantum fields nonlinear (and non-local), namely:

i
∂

∂t
Ψ̂(x, t) =

[
Ψ̂(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x, t)

+

∫
d3x′ V2(x

′ − x)Ψ̂†(x′)Ψ̂(x′)× Ψ̂(x),

−i ∂
∂t

Ψ̂†(x, t) = −
[
Ψ̂†(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂†(x, t)

+ Ψ̂†(x)×
∫
d3x′ V2(x

′ − x)Ψ̂†(x′)Ψ̂(x′).

(74)

However, without the two-body (or multi-body) interactions between the particles, the

Heisenberg equations (72) are linear and look just like Schrödinger equation for a single-

particle wave function. This similarity suggest that the quantum fields Ψ̂(x, t) and Ψ̂†(x, t)

may be obtained via the second quantization, which works like this: First, one quantizes

a single particle and writes the Schrödinger equation for its wave function. Second, one

re-interprets this wave function as a classical field ψ(x, t) and the the Schrödinger equation

becomes an Euler–Lagrange field equation which follows from the Lagrangian density

LSchr = −h̄ Im(ψ∗ψ̇) − h̄2

2m
∇ψ∗∇ψ − Ve(x)× ψ∗ψ . (75)

(Note, −h̄ Im(ψ∗ψ̇) = ih̄ψ∗ψ̇ + a total derivative.) Third, one switches to the Hamiltonian

formalism where the canonical conjugate field for ψ(x) is $(x) = ih̄ψ∗(x) and the classical

Hamiltonian is

H =

∫
d3x

(
ih̄ψ∗ × ψ̇ − L

)
=

∫
d3x

(
h̄2

2m
∇ψ∗∇ψ + Ve(x)× ψ∗ψ

)
. (76)

Finally, one quantizes the fields ψ(x) and ψ∗(x), hence the name “second quantization” as

the “first quantization” was writing down the single-particle Schrödinger equation in the first

18



place. Consequently, ψ(x) and ψ∗(x) become quantum fields Ψ̂(x) and Ψ̂†(x) obeying the

commutation relations (66) (which follow from the ih̄ψ∗(x) being the canonical conjugate of

ψ(x)), and the classical Hamiltonian (76) becomes the Hamiltonian operator (71).

Historically, the second quantization was used as a heuristic for deriving the non-relati-

vistic quantum field theory. Some people tried to take the second quantization literally and

got into all kinds of trouble because it does not make physical sense: A wave function is

not a classical field, and it should not be quantized again. Instead, one should not take the

intermediate steps of the second quantization seriously but focus on the end result — which

is a perfectly good quantum field theory. However, the physical content of this theory is not

a single particle but an arbitrary number of identical bosons, and the Ψ̂(x) and Ψ̂†(x) are

not quantized-again wave functions but quantum fields which destroy and create particles in

the Fock space. And of course, physically there is only one quantization.

The physically correct way to derive the non-relativistic QFT is the way we did it in

this note, the second quantization is only an old heuristic. Today, when one talks about a

second-quantized theory, it is simply a name for a quantum theory of an arbitrary number

of particles, usually formulated in terms of creation and annihilation operators in the Fock

space.
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