
PHY–396 K. Problem set #4. Due September 27, 2019.

1. Consider once again the massive vector field Âµ(x). In the previous homework (set#3,

problem 2), you (should have) expanded the free vector field into the creation and annihi-

lation operators multiplied by the plane-waves according to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikx × fµk,λ × âk,λ + e+ikx × f∗µk,λ × â

†
k,λ

)k0=+ωk

. (1)

The λ here labels the independent polarizations of a vector particle (for example, the

helicities λ = −1, 0,+1), while fµk,λ are the polarization vectors obeying

kµf
µ
k,λ = 0, gµνf

µ
k,λf

∗ν
k,λ′ = −δλ,λ′ . (2)

In this problem, we shall calculate the Feynman propagator for the massive vector field (1).

(a) First, a lemma: Show that any polarization vectors obeying the constraints (2) also

obey ∑
λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (3)

(b) Next, calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(4)

(c) Now consider a free scalar field (of the same mass m as the vector field) and its

Feynman propagator Gscalar
F (x− y). Show that

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y) = 〈0|TÂµ(x)Âν(y) |0〉 +

i

m2
δµ0δν0δ(4)(x− y). (5)
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To avoid the δ–function singularity in formulae like (5), the time-ordered product of the

vector fields (or rather, just of their Â0 components) is modified
?

according to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y). (6)

Consequently, the Feynman propagator for the massive vector field is defined using the

modified time-ordered product of the two fields,

GµνF (x− y)
def
= 〈0|T∗Âµ(x)Âν(y) |0〉 (7)

(d) Show that this propagator obtains as

GµνF (x− y) =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
. (8)

(e) Finally, write the classical action for the free vector field as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (9)

where Dµν is a differential operator, and show that the Feynman propagator (8) is a

Green’s function of this operator,

Dµνx GFνλ(x− y) = +iδµλδ
(4)(x− y). (10)

2. Next, a reading assignment. To help you understand the relations between the continuous

symmetries, their generators, the multiplets, and the representations of the generators and

of the finite symmetries, read about the rotational symmetry and its generators in chapter 3

of the J. J. Sakurai’s book Modern Quantum Mechanics.
†

Please focus on sections 1, 2,

3, second half of section 5 (representations of the rotation operators), and section 10; the

other sections 4, 6, 7, 8, and 9 are not relevant to the present class material.

PS: If you have already read the Sakurai’s book before but it has been a while, please read

it again.

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
† The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.

However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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3. Finally, consider a complex scalar field Φ(x) 6= Φ∗(x) with the classical Lagrangian density

L = ∂µΦ∗∂µΦ − m2Φ∗Φ − λ

2
(Φ∗Φ)2. (11)

This Lagrangian has a global phase symmetry

Φ(x) → Φ′(x) = e−iθΦ(x), Φ∗(x) → Φ∗′(x) = e+iθΦ∗(x). (12)

According to the Noether theorem — which I should soon explain in class — this symmetry

gives rise to a conserved current

Jµ = iΦ∗∂µΦ − iΦ∂µΦ∗. (13)

(a) Write down the classical equations for the fields Φ and Φ∗ — treat them as independent

variables — and verify that these field equations indeed lead to the conservation of the

current (13), ∂µJ
µ = 0.

Canonical quantization of the complex field yields non-hermitian quantum fields Φ̂(x) 6=
Φ̂†(x) and Π̂(x) 6= Π̂†(x) and the Hamiltonian

Ĥ =

∫
d3x

(
Π̂†Π + ∇Φ̂† · ∇Φ̂ + m2Φ̂†Φ̂ +

λ

2
Φ̂†Φ̂†Φ̂Φ̂

)
. (14)

(b) Derive this Hamiltonian and write down the equal-time commutation relations for all

the quantum fields.

In the quantum theory, the conserved current (13) becomes operator valued

Ĵ = −iΦ̂†∇Φ + iΦ̂∇Φ̂†,

Ĵ0 = i
2{Π̂

†, Φ̂†} − i
2{Π̂, Φ̂}

modulo operator ordering ambiguity,

(15)

with the net charge operator being

Q̂ =

∫
d3x Ĵ0. (16)

(c) Show that [Q̂, Φ̂(x)] = −Φ̂(x) while [Q̂, Φ̂†(x)] = +Φ̂†(x) and therefore the charge
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operator Q̂ generates the phase symmetry (12) according to

exp(+iθQ̂)Φ̂(x) exp(−iθQ̂) = e−iθΦ̂(x), exp(+iθQ̂)Φ̂†(x) exp(−iθQ̂) = e+iθΦ̂†(x).

(17)

(d) Verify that the net charge operator commutes with the Hamiltonian (14) — that’s

what charge conservation means in quantum mechanics.

(e) Finally, for the free complex fields (i.e., for λ = 0), expand the quantum fields into

creation and annihilation operators (for both particles and antiparticles), then show

that

Q̂ =

∫
d3k

(2π)3
1

2ωk

(
â†kâk − b̂†kb̂k

)
= #particles − #antiparticles. (18)
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