
PHY–396 K. Problem set #7. Due October 18, 2019.

This homework set has 7 problems, but none of them are long or hard. Also, 2 out of 7

problems are optional, for extra challenge.

The the first 3 problems of this set are about the generators and the representations of the

Lorentz symmetry. Problems 4, 6 and the optional problem 5 are about the Dirac matrices

and Dirac spinor fields. Finally, for the students interested in BEC and superfluidity, there

is an extra reading assignment (problem 7) based on my extra lecture on 10/11.

1. Consider the continuous Lorentz group SO+(3, 1) and its generators Ĵµν = −Ĵνµ. In

3D terms, the six independent Ĵµν generators comprise the 3 components of the angular

momentum Ĵ i = 1
2ε
ijkĴjk — which generate the rotations of space — plus 3 generators

K̂i = Ĵ0i = −Ĵ i0 of the Lorentz boosts.

(a) In 4D terms, the commutation relations of the Lorentz generators are

[
Ĵαβ, Ĵµν

]
= igβµĴαν − igαµĴβν − igβν Ĵαµ + igαν Ĵβµ. (1)

Show that in 3D terms, these relations become

[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (2)

The Lorentz symmetry dictates the commutation relations of the Ĵµν with any operators

comprising a Lorentz multiplet. In particular, for any Lorentz vector V̂ µ

[
V̂ λ, Ĵµν

]
= igλµV̂ ν − igλν V̂ µ. (3)

(b) Spell out these commutation relations in 3D terms, then use them to show that the

Lorentz boost generators K̂ do not commute with the Hamiltonian Ĥ.
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(c) Show that even in the non-relativistic limit, the Galilean boosts t′ = t, x′ = x + vt

and their generators K̂G do not commute with the Hamiltonian.

Note: Only the time-independent symmetries commute with the Hamiltonian. But

when the action of a symmetry is manifestly time dependent — like a Galilean boost

x′ = x + vt or a Lorentz boost — the symmetry operators do not commute with the

time evolution and hence with the Hamiltonian.

2. Next, consider the little group G(p) of Lorentz symmetries preserving some momentum

4–vector pµ. For the moment, allow the pµ to be time-like, light-like, or even space-like —

anything goes as long as p 6= 0.

(d) Show that the little group G(p) is generated by the 3 components of the vector

R̂ = p0Ĵ + p× K̂ (4)

after a suitable component-by-component rescaling.

Suppose the momentum pµ belongs to a massive particle, thus pµpµ = m2 > 0. For

simplicity, assume the particle moves in z direction with velocity β, thus pµ = (E, 0, 0, p)

for E = γm and p = βγm. In this case, the properly normalized generators of the little

group G(p) are the

J̃x =
1

m
R̂x = γĴx − βγK̂y,

J̃y =
1

m
R̂y = γĴy + βγK̂x,

J̃z =
1

γm
R̂z = Ĵz, the helicity.

(5)

(e) Show that these generators have angular-momentum-like commutators with each other,

[J̃ i, J̃j ] = iεijkJ̃k. Consequently, the little group G(p) is isomorphic to the rotation

group SO(3).

Now suppose the momentum pµ belongs to a massless particle, pµpµ = 0. Again, assume

for simplicity that the particle moves in the z direction, thus pµ = (E, 0, 0, E). In this case,
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we cannot normalize the generators of the little group as in eq. (5); instead, let’s normalize

them according to

Î =
1

E
R̂ = Ĵ + ~β × K̂, (6)

or in components,

Îx = Ĵx − K̂y, Îy = Ĵy + K̂x, Îz = Ĵz. (7)

(f) Show that these generators obey similar commutation relations to the p̂x, p̂y, and Ĵz

operators, namely

[Ĵz, Îx] = +iÎy, [Ĵz, Îy] = −iÎx, [Îx, Îy] = 0. (8)

Consequently, the little group G(p) is isomorphic to the ISO(2) group of rotations and

translations in the xy plane.

(g) Finally, show that for a tachyonic momentum with pµpµ < 0, the properly normalized

generators of the little group have similar commutation relations to the K̂x, K̂y, and

Ĵz operators. Consequently, the little group G(p) is isomorphic to the SO+(2, 1), the

continuous Lorentz group in 2 + 1 spacetime dimensions.

3. Now let’s focus on the massless particles. As explained in class, the finite unitary multiplets

of the G(p) ∼= ISO(2) group generated by the (7) operators are singlets |λ〉, although they

are non-trivial singlets for λ 6= 0. Specifically, the state |λ〉 is an eigenstate of the helicity

operator Ĵz (for the momentum in the z direction) and are annihilated by the Îx,y operators,

Ĵz |λ〉 = λ |λ〉 , Îx |λ〉 = 0, Îy |λ〉 = 0. (9)

(a) Show that in 4D terms the state |p, λ〉 of a massless particle satisfies

εαβγδĴ
βγP̂ δ |p, λ〉 = 2λP̂α |p, λ〉 . (10)

(b) Use eq. (10) to show that continuous Lorentz transforms do not change helicities of
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massless particles,

∀L ∈ SO+(3, 1), D̂(L) |p, λ〉 = |Lp, sameλ〉 × eiphase. (11)

4. Next, an exercise in Dirac matrices γµ. In this problem, you should not assume any explicit

matrices for the γµ but simply use the anticommutation relations

γµγν + γνγµ = 2gµν . (12)

When necessary, you may also assume that the Dirac matrices are 4×4, and the γ0 matrix

is hermitian while the γ1, γ2, γ3 matrices are antihermitian, (γ0)† = +γ0 while (γi)† = −γi

for i = 1, 2, 3.

(a) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν , and γαγλγµγνγα =

−2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

(b) The electron field in the EM background obeys the covariant Dirac equation(
iγµDµ − m

)
Ψ(x) = 0 where DµΨ = ∂µΨ− ieAµΨ. Show that this equation implies(

DµD
µ + m2 − eFµνS

µν
)

Ψ(x) = 0. (13)

Besides the 4 Dirac matrices γµ, there is another useful matrix γ5
def
= iγ0γ1γ2γ3.

(c) Show that the γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices, γ5Sµν = +Sµνγ5.

(d) Show that the γ5 is hermitian and that (γ5)2 = 1.

(e) Show that γ5 = (i/24)εκλµνγ
κγλγµγν and that γ[κγλγµγν] = +24iεκλµν γ5.

(f) Show that γ[λγµγν] = +6iεκλµν γκγ
5.

(g) Show that any 4 × 4 matrix Γ is a unique linear combination of the following 16

matrices: 1, γµ, 1
2γ

[µγν] = −2iSµν , γ5γµ, and γ5.

∗ My conventions here are: ε0123 = −1, ε0123 = +1, γ[µγν] = γµγν − γνγµ,

γ[λγµγν] = γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ, etc.
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5. This is an optional exercise, for extra challenge. Let’s generalize the Dirac matrices to

spacetime dimensions d 6= 4. Such matrices always satisfy the Clifford algebra (12), but

their sizes depend on d.

Generalization of the γ5 to d dimensions is Γ = inγ0γ1 · · · γd−1, where the pre-factor

in = ±i or ±1 is chosen such that Γ = Γ† and Γ2 = +1.

(a) For even d, Γ anticommutes with all the γµ. Prove this, then use this fact to show that

there are 2d independent products of the γµ matrices, and consequently the matrices

should be 2d/2 × 2d/2.

(b) For odd d, Γ commutes with all the γµ — prove this. Consequently, one can set Γ = +1

or Γ = −1; the two choices lead to in-equivalent sets of the γµ.

Classify the independent products of the γµ for odd d and show that their net number

is 2d−1; consequently, the matrices should be 2(d−1)/2 × 2(d−1)/2.

6. Now let’s go back to d = 3 + 1 and learn about the Weyl spinors and Weyl spinor fields.

Since all the spin matrices Sµν commute with the γ5, for all continuous Lorentz symmetries

Lµν their Dirac-spinor representations MD(L) = exp
(
− i

2ΘαβS
αβ
)

are block-diagonal in

the eigenbasis of the γ5. This makes the Dirac spinor Ψ a reducible multiplet of the

continuous Lorentz group SO+(3, 1) — it comprises two different irreducible 2-component

spinor multiplets, called the left-handed Weyl spinor ψL and the right-handed Weyl spinor

ψR.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

γµ =

(
0 σ̄µ

σµ 0

)
where

σµ
def
=
(
12×2,−σσ

)
,

σ̄µ
def
=
(
12×2,+σσ

)
,

(14)

and consequently

γ5 =

(
−1 0

0 +1

)
=⇒ MD(L) =

(
ML(L) 0

0 MR(L)

)
. (15)

(a) Check that the γ5 matrix indeed has this form and write down explicit matrices for

the Sµν in the Weyl convention.
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(b) Show that for a space rotation R through angle θ around axis n,

ML(R) = MR(R) = exp
(
− i

2 θn · σσ
)
. (16)

Likewise, show that for a Lorentz boost B of speed v in the direction n,

ML(B) = exp(−1
2 r n · σσ

)
while MR(B) = exp(+1

2 r n · σσ
)

(17)

where r = artanh(v) is the rapidity of the boost. For successive boosts in the same

direction, the rapidities add up, r1+2 = r1 + r2. Consequently, a finite Lorentz boost

of rapidity r in the direction n is B = exp(rn · K̂).

(c) The more familiar β and γ parameters of a Lorentz boost are related to the rapidity

as

β = tanh(r), γ = cosh(r), βγ = sinh(r). (18)

Show that in terms of these parameters, eqs. (17) translate to

ML(B) =
√
γ ×

√
1 − β n · σσ , MR(B) =

√
γ ×

√
1 + β n · σσ . (19)

(d) Show that for any continuous Lorentz symmetry L, the ML(L) and the MR(L) matrices

are related to each other according to

MR(L) = σ2 ×M∗L(L)× σ2 , ML(L) = σ2 ×M∗R(L)× σ2 . (20)

Hint: all 3 Pauli matrices σi, are related to their complex conjugates σ∗i according to

σ2σ
∗
i σ2 = −σi,

In the Weyl convention for the Dirac matrices, the Dirac spinor field Ψ(x) splits into the

left-handed Weyl spinor field ψL(x) and the right-handed Weyl spinor field ψR(x) according

to

ΨDirac(x) =

(
ψL(x),

ψR(x)

)
where

ψ′L(x′) = ML(L)ψL(x),

ψ′R(x′) = MR(L)ψR(x).
(21)
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(e) Show that the hermitian conjugate of each Weyl spinor transforms equivalently to the

other spinor. Specifically, the σ2 × ψ∗L(x) transforms under continuous Lorentz sym-

metries like the ψR(x), while the σ2 × ψ∗R(x) transforms like the ψL(x).

Note: the ∗ superscript on a multi-component quantum field means hermitian conju-

gation of each component field but without transposing the components, thus

ψL =

(
ψL1

ψL2

)
, ψ∗L =

(
ψ†L1

ψ†L2

)
, while ψ†L = (ψ†L1 ψ†L2 ) , (22)

and likewise for the ψR and its conjugates.

Finally, consider the Dirac Lagrangian L = Ψ(iγµ∂µ − m)Ψ.

(f) Express this Lagrangian in terms of the Weyl spinor fields ψL(x) and ψR(x) (and their

conjugates ψ†L(x) and ψ†R(x)).

(g) Show that for m = 0 — and only for m = 0 — the two Weyl spinor fields become

independent from each other.

7. Finally, for the students who came to my extra lecture on 10/11 about BEC and superflu-

idity, there is an extra reading assignment, namely my notes on the subject. In particular,

please read the solutions to all the lemmas.
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