
PHY–396 K. Problem set #8. Due October 25, 2019.

1. Consider the plane-wave solutions of the Dirac equation, Ψα(x) = uα × e−ipx and Ψα(x) =

vα × e+ipx for some x-independent Dirac spinors uα(p, s) and vα(p, s).

(a) Check that these waves indeed solve the Dirac equation provided p2 = m2 while

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0. (1)

By convention, we always take E = p0 = +
√

p2 +m2 — that’s why we have both e−ipxuα

and e+ipxvα types of wave — while the spinor coefficients u(p, s) and v(p, s) are normalized

to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ . (2)

In this problem we shall write down explicit formulae for these spinors in the Weyl basis for

the γµ matrices.

(b) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(3)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(c) For other momenta, u(p, s) = MD(boost) × u(p = 0, s) for the boost that turns (m,~0)

into pµ. Use eqs. (7.19) from the previous homework set#7 to show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
=

(√
pµσ̄µ ξs√
pµσµ ξs

)
. (4)

(d) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
pµσ̄µ ηs

−
√
pµσµ ηs

)
(5)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .
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Physically, the ηs should have opposite spins from ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ∗−s.

(e) Check that ηs = σ2ξ
∗
s = ±iξ∗−s indeed provides for the η†sSηs = −ξ†sSξs, then show that

this leads to

v(p, s) = γ2u∗(p, s) and u(p, s) = γ2v∗(p, s). (6)

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 , the

Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl

spinor components ψL(x) or ψR(x) of the Dirac spinor Ψ(x), while the other component

becomes negligible. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(7)

Note that for the electron waves the helicity agrees with the chirality — they are both

left or both right, — but for the positron waves the chirality is opposite from the helicity.

In the previous homework#7 (problem 6.g), we saw that for m = 0 the LH and the RH

Weyl spinor fields decouple from each other. Now this exercise show us which particle modes

comprise each Weyl spinor: The ψL(x) and its hermitian conjugate ψ†L(x) contain the left-

handed fermions and the right-handed antifermions, while the ψR(x) and the ψ†R(x) contain

the right-handed fermions and the left-handed antifermions.

2. Next, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and v(p, s)

— although you may use the Weyl basis to verify them. We shall use these properties in

class when we get to Quantum Electrodynamics (QED).

(a) Show that

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ ; (8)

note the ±2m normalization factors here, unlike the +2E factors in eq. (2) for the u†u

and the v†v.
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(b) There are only two independent SO(3) spinors, hence
∑

s ξsξ
†
s =

∑
s ηsη

†
s = 12×2. Use

this fact to show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (9)

3. Now consider the charge conjugation symmetry C which exchanges particles with antiparti-

cles, for example the electrons e− with the positrons e+,

Ĉ
∣∣e−(p, s)

〉
=
∣∣e+(p, s)

〉
, Ĉ

∣∣e+(p, s)
〉

=
∣∣e−(p, s)

〉
. (10)

Note that the operator Ĉ is unitary and squares to one (repeating the exchange brings us

back to the original particles), hence Ĉ† = Ĉ−1 = Ĉ.

(a) In the fermionic Fock space, the Ĉ operator act on multi-particle states by turning each

particle into an antiparticle and vice verse according to eqs. (10). Show that this action

implies

Ĉ â†p,sĈ = b̂†p,s , Ĉ b̂†p,sĈ = â†p,s , Ĉ âp,sĈ = b̂p,s , Ĉ b̂p,sĈ = âp,s . (11)

(b) The quantum Dirac fields Ψ̂(x) and Ψ̂(x) are linear combinations of creation and anni-

hilation operators. Use eqs. (11) and the plane-wave relations (6) to show that

ĈΨ̂(x)Ĉ = γ2Ψ̂∗(x) and ĈΨ̂(x)Ĉ = Ψ̂
∗
(x)γ2 (12)

where ∗ stands for the hermitian conjugation of the component fields but without trans-

posing a column vector (of 4 Dirac components) into a row vector or vice verse, thus

Ψ̂ =


ψ̂1

ψ̂2

ψ̂3

ψ̂4

 , Ψ̂∗ =


ψ̂†1

ψ̂†2

ψ̂†3

ψ̂†4

 ,

Ψ̂ =
(
ψ̂†1, ψ̂

†
2, ψ̂
†
3, ψ̂
†
4

)
× γ0,

Ψ̂
∗

=
(
ψ̂1, ψ̂2, ψ̂3, ψ̂4

)
× γ0.

(13)

(c) Show that the Dirac equation transforms covariantly under the charge conjugation (12).

Hint: prove and use γµγ2 = −γ2(γµ)∗ for all γµ in the Weyl basis.
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(d) Show that that the classical Dirac Lagrangian is invariant under the charge conjugation

(up to a total spacetime derivative). Note that in the classical limit the Dirac fields

anticommute with each other, Ψ∗αΨβ = −ΨβΨ∗α. Also, similar to the hermitian conjuga-

tion of quantum fields, the complex conjugation of fermionic fields reverses their order:

(F1F2)
∗ = F ∗2F

∗
1 = −F ∗1F ∗2 .

4. Another important discrete symmetry is the parity P, the im-proper Lorentz symmetry that

reflects the space but not the time, (x, t) → (−x,+t). This symmetry acts on the Dirac

spinor fields according to

Ψ̂′(−x,+t) = ±γ0Ψ̂(+x,+t) (14)

where the overall ± sign is the intrinsic parity of the fermion species described by the Ψ̂

field.

(a) Verify that the Dirac equation transforms covariantly under (14) and that the Dirac

Lagrangian is invariant (apart from L(x, t)→ L(−x, t)).

In the Fock space, eq. (14) becomes

P̂Ψ̂(x, t)P̂ = ±γ0Ψ̂(−x, t) (15)

for some unitary operator P̂ that squares to one. Let’s find how this operator acts on the

particles and their states.

(b) First, check the plane-wave solutions u(p, s) and v(p, s) from problem (1) and show that

u(−p, s) = +γ0u(p, s) while v(−p, s) = −γ0v(p, s).

(c) Now show that eq. (15) implies

P̂ âp,s P̂ = ±â−p,+s , P̂ â†p,s P̂ = ±â†−p,+s ,

P̂ b̂p,s P̂ = ∓b̂−p,+s , P̂ b̂†p,s P̂ = ∓b̂†−p,+s ,
(16)

and hence

P̂ |F (p, s)〉 = ± |F (−p,+s)〉 and P̂
∣∣F (p, s)

〉
= ∓

∣∣F (−p,+s)
〉
. (17)

Note that the fermion F and the antifermion F have opposite intrinsic parities!
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5. A Dirac spinor field Ψ(x) comprises two 2-component Weyl spinor fields,

Ψ̂(x) =

(
ψ̂L(x)

ψ̂R(x)

)
. (18)

Spell out the actions of C, P, and CP (combined —bf CandP symmetries on the Weyl

spinors. In particular, show that C and P interchange the two spinors, while the combined

CP symmetry acts on the ψL and the ψR independently from each other.

6. Consider the bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally, such

products have form ΨΓΨ where Γ is one of 16 matrices discussed in the previous homework#7

(problem 4.g); altogether, we have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψ i
2γ

[µγν]Ψ, Aµ = Ψγ5γµΨ, P = Ψiγ5Ψ. (19)

(a) Show that all the bilinears (19) are Hermitian.

Hint: First, show that
(
ΨΓΨ

)†
= ΨΓΨ.

Note: despite the Fermi statistics,
(

Ψ†αΨβ

)†
= +Ψ†βΨα.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors, and the Tµν as an antisymmetric tensor.

(c) Find the transformation rules of the bilinears (19) under parity and show that while S

is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.

Finally, consider the charge-conjugation properties of the Dirac bilinears. To avoid the

operator-ordering problems, take the classical limit where Ψ(x) and Ψ†(x) anticommute with

each other, ΨαΨ†β = −Ψ†βΨα.

(d) Show that C turns ΨΓΨ into ΨΓcΨ where Γc = γ0γ2Γ>γ0γ2.

(e) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.
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