1. Consider the plane-wave solutions of the Dirac equation, $\Psi_{\alpha}(x)=u_{\alpha} \times e^{-i p x}$ and $\Psi_{\alpha}(x)=$ $v_{\alpha} \times e^{+i p x}$ for some x-independent Dirac spinors $u_{\alpha}(p, s)$ and $v_{\alpha}(p, s)$.
(a) Check that these waves indeed solve the Dirac equation provided $p^{2}=m^{2}$ while

$$
\begin{equation*}
(\not p-m) u(p, s)=0, \quad(\not p+m) v(p, s)=0 . \tag{1}
\end{equation*}
$$

By convention, we always take $E=p^{0}=+\sqrt{\mathbf{p}^{2}+m^{2}}$ - that's why we have both $e^{-i p x} u_{\alpha}$ and $e^{+i p x} v_{\alpha}$ types of wave - while the spinor coefficients $u(p, s)$ and $v(p, s)$ are normalized to

$$
\begin{equation*}
u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E \delta_{s, s^{\prime}} \tag{2}
\end{equation*}
$$

In this problem we shall write down explicit formulae for these spinors in the Weyl basis for the γ^{μ} matrices.
(b) Show that for $\mathbf{p}=0$,

$$
\begin{equation*}
u(\mathbf{p}=\mathbf{0}, s)=\binom{\sqrt{m} \xi_{s}}{\sqrt{m} \xi_{s}} \tag{3}
\end{equation*}
$$

where ξ_{s} is a two-component $S O(3)$ spinor encoding the electron's spin state. The ξ_{s} are normalized to $\xi_{s}^{\dagger} \xi_{s^{\prime}}=\delta_{s, s^{\prime}}$.
(c) For other momenta, $u(p, s)=M_{D}$ (boost) $\times u(\mathbf{p}=0, s)$ for the boost that turns $(m, \overrightarrow{0})$ into p^{μ}. Use eqs. (7.19) from the previous homework set\#7 to show that

$$
\begin{equation*}
u(p, s)=\binom{\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}{\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}=\binom{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi_{s}}{\sqrt{p_{\mu} \sigma^{\mu}} \xi_{s}} \tag{4}
\end{equation*}
$$

(d) Use similar arguments to show that

$$
\begin{equation*}
v(p, s)=\binom{+\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}{-\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}=\binom{+\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \eta_{s}}{-\sqrt{p_{\mu} \sigma^{\mu}} \eta_{s}} \tag{5}
\end{equation*}
$$

where η_{s} are two-component $S O(3)$ spinors normalized to $\eta_{s}^{\dagger} \eta_{s^{\prime}}=\delta_{s, s^{\prime}}$.

Physically, the η_{s} should have opposite spins from ξ_{s} - the holes in the Dirac sea have opposite spins (as well as p^{μ}) from the missing negative-energy particles. Mathematically, this requires $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$; we may solve this condition by letting $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$.
(e) Check that $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$ indeed provides for the $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$, then show that this leads to

$$
\begin{equation*}
v(p, s)=\gamma^{2} u^{*}(p, s) \quad \text { and } \quad u(p, s)=\gamma^{2} v^{*}(p, s) \tag{6}
\end{equation*}
$$

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity $\lambda= \pm \frac{1}{2}$, the Dirac plane waves become chiral - i.e., dominated by one of the two irreducible Weyl spinor components $\psi_{L}(x)$ or $\psi_{R}(x)$ of the Dirac spinor $\Psi(x)$, while the other component becomes negligible. Specifically,

$$
\begin{align*}
& u\left(p,-\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\xi_{L}}{0}, \quad u\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{0}{\xi_{R}}, \\
& v\left(p,-\frac{1}{2}\right) \approx-\sqrt{2 E}\binom{0}{\eta_{L}}, \quad v\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\eta_{R}}{0} . \tag{7}
\end{align*}
$$

Note that for the electron waves the helicity agrees with the chirality - they are both left or both right, - but for the positron waves the chirality is opposite from the helicity.

In the previous homework\#7 (problem 6.g), we saw that for $m=0$ the LH and the RH Weyl spinor fields decouple from each other. Now this exercise show us which particle modes comprise each Weyl spinor: The $\psi_{L}(x)$ and its hermitian conjugate $\psi_{L}^{\dagger}(x)$ contain the lefthanded fermions and the right-handed antifermions, while the $\psi_{R}(x)$ and the $\psi_{R}^{\dagger}(x)$ contain the right-handed fermions and the left-handed antifermions.
2. Next, let's establish some basis-independent properties of the Dirac spinors $u(p, s)$ and $v(p, s)$ - although you may use the Weyl basis to verify them. We shall use these properties in class when we get to Quantum Electrodynamics (QED).
(a) Show that

$$
\begin{equation*}
\bar{u}(p, s) u\left(p, s^{\prime}\right)=+2 m \delta_{s, s^{\prime}}, \quad \bar{v}(p, s) v\left(p, s^{\prime}\right)=-2 m \delta_{s, s^{\prime}} ; \tag{8}
\end{equation*}
$$

note the $\pm 2 m$ normalization factors here, unlike the $+2 E$ factors in eq. (2) for the $u^{\dagger} u$ and the $v^{\dagger} v$.
(b) There are only two independent $S O(3)$ spinors, hence $\sum_{s} \xi_{s} \xi_{s}^{\dagger}=\sum_{s} \eta_{s} \eta_{s}^{\dagger}=\mathbf{1}_{2 \times 2}$. Use this fact to show that

$$
\begin{equation*}
\sum_{s=1,2} u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)=(\not p+m)_{\alpha \beta} \quad \text { and } \quad \sum_{s=1,2} v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)=(\not p-m)_{\alpha \beta} . \tag{9}
\end{equation*}
$$

3. Now consider the charge conjugation symmetry \mathbf{C} which exchanges particles with antiparticles, for example the electrons e^{-}with the positrons e^{+},

$$
\begin{equation*}
\widehat{\mathbf{C}}\left|e^{-}(\mathbf{p}, s)\right\rangle=\left|e^{+}(\mathbf{p}, s)\right\rangle, \quad \widehat{\mathbf{C}}\left|e^{+}(\mathbf{p}, s)\right\rangle=\left|e^{-}(\mathbf{p}, s)\right\rangle \tag{10}
\end{equation*}
$$

Note that the operator $\widehat{\mathbf{C}}$ is unitary and squares to one (repeating the exchange brings us back to the original particles), hence $\widehat{\mathbf{C}}^{\dagger}=\widehat{\mathbf{C}}^{-1}=\widehat{\mathbf{C}}$.
(a) In the fermionic Fock space, the $\widehat{\mathbf{C}}$ operator act on multi-particle states by turning each particle into an antiparticle and vice verse according to eqs. (10). Show that this action implies

$$
\begin{equation*}
\widehat{\mathbf{C}} \hat{a}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{C}}=\hat{b}_{\mathbf{p}, s}^{\dagger}, \quad \widehat{\mathbf{C}} \hat{b}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{C}}=\hat{a}_{\mathbf{p}, s}^{\dagger}, \quad \widehat{\mathbf{C}} \hat{a}_{\mathbf{p}, s} \widehat{\mathbf{C}}=\hat{b}_{\mathbf{p}, s}, \quad \widehat{\mathbf{C}} \hat{b}_{\mathbf{p}, s} \widehat{\mathbf{C}}=\hat{a}_{\mathbf{p}, s} \tag{11}
\end{equation*}
$$

(b) The quantum Dirac fields $\widehat{\Psi}(x)$ and $\widehat{\bar{\Psi}}(x)$ are linear combinations of creation and annihilation operators. Use eqs. (11) and the plane-wave relations (6) to show that

$$
\begin{equation*}
\widehat{\mathbf{C}} \widehat{\Psi}(x) \widehat{\mathbf{C}}=\gamma^{2} \widehat{\Psi}^{*}(x) \quad \text { and } \quad \widehat{\mathbf{C}} \widehat{\bar{\Psi}}(x) \widehat{\mathbf{C}}=\widehat{\bar{\Psi}}^{*}(x) \gamma^{2} \tag{12}
\end{equation*}
$$

where $*$ stands for the hermitian conjugation of the component fields but without transposing a column vector (of 4 Dirac components) into a row vector or vice verse, thus

$$
\widehat{\Psi}=\left(\begin{array}{c}
\hat{\psi}_{1} \tag{13}\\
\hat{\psi}_{2} \\
\hat{\psi}_{3} \\
\hat{\psi}_{4}
\end{array}\right), \quad \widehat{\Psi}^{*}=\left(\begin{array}{c}
\hat{\psi}_{1}^{\dagger} \\
\hat{\psi}_{2}^{\dagger} \\
\hat{\psi}_{3}^{\dagger} \\
\hat{\psi}_{4}^{\dagger}
\end{array}\right), \quad \begin{gathered}
\overline{\bar{\Psi}}=\left(\hat{\psi}_{1}^{\dagger}, \hat{\psi}_{2}^{\dagger}, \hat{\psi}_{3}^{\dagger}, \hat{\psi}_{4}^{\dagger}\right) \times \gamma^{0} \\
\widehat{\bar{\Psi}}^{*}=\left(\hat{\psi}_{1}, \hat{\psi}_{2}, \hat{\psi}_{3}, \hat{\psi}_{4}\right) \times \gamma^{0}
\end{gathered}
$$

(c) Show that the Dirac equation transforms covariantly under the charge conjugation (12).

Hint: prove and use $\gamma^{\mu} \gamma^{2}=-\gamma^{2}\left(\gamma^{\mu}\right)^{*}$ for all γ^{μ} in the Weyl basis.
(d) Show that that the classical Dirac Lagrangian is invariant under the charge conjugation (up to a total spacetime derivative). Note that in the classical limit the Dirac fields anticommute with each other, $\Psi_{\alpha}^{*} \Psi_{\beta}=-\Psi_{\beta} \Psi_{\alpha}^{*}$. Also, similar to the hermitian conjugation of quantum fields, the complex conjugation of fermionic fields reverses their order: $\left(F_{1} F_{2}\right)^{*}=F_{2}^{*} F_{1}^{*}=-F_{1}^{*} F_{2}^{*}$.
4. Another important discrete symmetry is the parity \mathbf{P}, the im-proper Lorentz symmetry that reflects the space but not the time, $(\mathbf{x}, t) \rightarrow(-\mathbf{x},+t)$. This symmetry acts on the Dirac spinor fields according to

$$
\begin{equation*}
\widehat{\Psi}^{\prime}(-\mathbf{x},+t)= \pm \gamma^{0} \widehat{\Psi}(+\mathbf{x},+t) \tag{14}
\end{equation*}
$$

where the overall \pm sign is the intrinsic parity of the fermion species described by the $\widehat{\Psi}$ field.
(a) Verify that the Dirac equation transforms covariantly under (14) and that the Dirac Lagrangian is invariant (apart from $\mathcal{L}(\mathbf{x}, t) \rightarrow \mathcal{L}(-\mathbf{x}, t)$).

In the Fock space, eq. (14) becomes

$$
\begin{equation*}
\widehat{\mathbf{P}} \widehat{\Psi}(\mathbf{x}, t) \widehat{\mathbf{P}}= \pm \gamma^{0} \widehat{\Psi}(-\mathbf{x}, t) \tag{15}
\end{equation*}
$$

for some unitary operator $\widehat{\mathbf{P}}$ that squares to one. Let's find how this operator acts on the particles and their states.
(b) First, check the plane-wave solutions $u(\mathbf{p}, s)$ and $v(\mathbf{p}, s)$ from problem (1) and show that $u(-\mathbf{p}, s)=+\gamma^{0} u(\mathbf{p}, s)$ while $v(-\mathbf{p}, s)=-\gamma^{0} v(\mathbf{p}, s)$.
(c) Now show that eq. (15) implies

$$
\begin{array}{ll}
\widehat{\mathbf{P}} \hat{a}_{\mathbf{p}, s} \widehat{\mathbf{P}}= \pm \hat{a}_{-\mathbf{p},+s}, & \widehat{\mathbf{P}} \hat{a}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{P}}= \pm \hat{a}_{-\mathbf{p},+s}^{\dagger}, \\
\widehat{\mathbf{P}} \hat{b}_{\mathbf{p}, s} \widehat{\mathbf{P}}=\mp \hat{b}_{-\mathbf{p},+s}, & \widehat{\mathbf{P}} \hat{b}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{P}}=\mp \hat{b}_{-\mathbf{p},+s}^{\dagger}, \tag{16}
\end{array}
$$

and hence

$$
\begin{equation*}
\widehat{\mathbf{P}}|F(\mathbf{p}, s)\rangle= \pm|F(-\mathbf{p},+s)\rangle \quad \text { and } \quad \widehat{\mathbf{P}}|\bar{F}(\mathbf{p}, s)\rangle=\mp|\bar{F}(-\mathbf{p},+s)\rangle . \tag{17}
\end{equation*}
$$

Note that the fermion F and the antifermion \bar{F} have opposite intrinsic parities!
5. A Dirac spinor field $\Psi(x)$ comprises two 2-component Weyl spinor fields,

$$
\begin{equation*}
\widehat{\Psi}(x)=\binom{\hat{\psi}_{L}(x)}{\hat{\psi}_{R}(x)} . \tag{18}
\end{equation*}
$$

Spell out the actions of \mathbf{C}, \mathbf{P}, and $\mathbf{C P}$ (combined -bf Cand \mathbf{P} symmetries on the Weyl spinors. In particular, show that \mathbf{C} and \mathbf{P} interchange the two spinors, while the combined $\mathbf{C P}$ symmetry acts on the ψ_{L} and the ψ_{R} independently from each other.
6. Consider the bilinear products of a Dirac field $\Psi(x)$ and its conjugate $\bar{\Psi}(x)$. Generally, such products have form $\bar{\Psi} \Gamma \Psi$ where Γ is one of 16 matrices discussed in the previous homework\# 7 (problem 4.g); altogether, we have
$S=\bar{\Psi} \Psi, \quad V^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi, \quad T^{\mu \nu}=\bar{\Psi} \frac{i}{2} \gamma^{[\mu} \gamma^{\nu]} \Psi, \quad A^{\mu}=\bar{\Psi} \gamma^{5} \gamma^{\mu} \Psi, \quad P=\bar{\Psi} i \gamma^{5} \Psi$.
(a) Show that all the bilinears (19) are Hermitian.

Hint: First, show that $(\bar{\Psi} \Gamma \Psi)^{\dagger}=\overline{\Psi \Gamma} \Psi$.
Note: despite the Fermi statistics, $\left(\Psi_{\alpha}^{\dagger} \Psi_{\beta}\right)^{\dagger}=+\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors, and the $T^{\mu \nu}$ as an antisymmetric tensor.
(c) Find the transformation rules of the bilinears (19) under parity and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.

Finally, consider the charge-conjugation properties of the Dirac bilinears. To avoid the operator-ordering problems, take the classical limit where $\Psi(x)$ and $\Psi^{\dagger}(x)$ anticommute with each other, $\Psi_{\alpha} \Psi_{\beta}^{\dagger}=-\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(d) Show that \mathbf{C} turns $\bar{\Psi} \Gamma \Psi$ into $\bar{\Psi} \Gamma^{c} \Psi$ where $\Gamma^{c}=\gamma^{0} \gamma^{2} \Gamma^{\top} \gamma^{0} \gamma^{2}$.
(e) Calculate Γ^{c} for all 16 independent matrices Γ and find out which Dirac bilinears are C -even and which are C -odd.

