PHY-396 K. Problem set #8. Due October 25, 2019.

. Consider the plane-wave solutions of the Dirac equation, ¥ (z) = ug X e % and U, (z) =

vo X €T for some z-independent Dirac spinors uq(p, s) and vy (p, 5).

(a) Check that these waves indeed solve the Dirac equation provided p? = m? while
#—m)ulp,s) = 0, F+m)v(p,s) = 0. (1)

By convention, we always take E = p? = ++/p2? + m2 — that’s why we have both e~#%y,,
and ety types of wave — while the spinor coefficients u(p, s) and v(p, s) are normalized

to

u'(ps)ulp,s') = vl(p,s)o(p,s') = 2B (2)
In this problem we shall write down explicit formulae for these spinors in the Weyl basis for
the v* matrices.
(b) Show that for p = 0,

\/ﬁés) )

Vimés

where & is a two-component SO(3) spinor encoding the electron’s spin state. The &g

u(sz,S) = (

are normalized to flfsf = 05,5/

(¢) For other momenta, u(p, s) = Mp(boost) x u(p = 0, s) for the boost that turns (m, 0)
into p. Use egs. (7.19) from the previous homework set#7 to show that
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(d) Use similar arguments to show that

sy = (VPRI (VDT (5)
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where 74 are two-component SO(3) spinors normalized to 77;773' = g,/
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Physically, the ns should have opposite spins from & — the holes in the Dirac sea have
opposite spins (as well as p#) from the missing negative-energy particles. Mathematically,

this requires nlSns = —fles; we may solve this condition by letting ny = 02&; = +i* .

(e) Check that 1y = o9&t = +i¢* , indeed provides for the 7iSns = —€1SE,, then show that
this leads to

v(p,s) =7*u*(p,s) and u(p,s) = Y*v*(p,s). (6)

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity A = j:%, the
Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl
spinor components ¥ (z) or ¥ g(x) of the Dirac spinor ¥(z), while the other component

becomes negligible. Specifically,
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Note that for the electron waves the helicity agrees with the chirality — they are both
left or both right, — but for the positron waves the chirality is opposite from the helicity.

In the previous homework#7 (problem 6.g), we saw that for m = 0 the LH and the RH
Weyl spinor fields decouple from each other. Now this exercise show us which particle modes
comprise each Weyl spinor: The 1, (x) and its hermitian conjugate wz(x) contain the left-
handed fermions and the right-handed antifermions, while the 1 p(x) and the 2/1}?(7;) contain

the right-handed fermions and the left-handed antifermions.

. Next, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and v(p, s)
— although you may use the Weyl basis to verify them. We shall use these properties in

class when we get to Quantum Electrodynamics (QED).

(a) Show that
u(p, s)u(p,s’) = +2més,s,  (p, s)v(p, s = —2mds ¢ ; (8)

note the +2m normalization factors here, unlike the +2F factors in eq. (2) for the ufu

and the viv.
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(b)

There are only two independent SO(3) spinors, hence ) §S£;r = nsnl =1,., Use
this fact to show that

S el )is(p,5) = F+map and S va(p$)0p(5) = Mg (9)

s=1,2 s=1,2

3. Now consider the charge conjugation symmetry C which exchanges particles with antiparti-

cles, for example the electrons e~ with the positrons e™,

+

~ -~

Cle(p.s)) = |et(m,s)), Cle(ps)) = |e(pos). (10)

Note that the operator C is unitary and squares to one (repeating the exchange brings us

back to the original particles), hence Ct=Cc!=C.

(a)

In the fermionic Fock space, the C operator act on multi-particle states by turning each
particle into an antiparticle and vice verse according to egs. (10). Show that this action

implies

~

C =al,, Ca,,C =b Cb,,C = ap,. (11)

Sop o .
Cap,C =0 Cb p,s> p.s PS> p.s

The quantum Dirac fields (z) and ¥(z) are linear combinations of creation and anni-
hilation operators. Use egs. (11) and the plane-wave relations (6) to show that

CU(z)C = +*U*(z) and 66(1‘)6 = 6?3:)72 (12)

where % stands for the hermitian conjugation of the component fields but without trans-

posing a column vector (of 4 Dirac components) into a row vector or vice verse, thus

Z/31 lﬂ = A At AL oA

s o a v = (919595 9]) x ",
A3 f; U= <¢17’&27’@371&4> X P)/O'
1/14 1/14

Show that the Dirac equation transforms covariantly under the charge conjugation (12).

Hint: prove and use y#v2 = —2(y*)* for all 4 in the Weyl basis.



(d) Show that that the classical Dirac Lagrangian is invariant under the charge conjugation
(up to a total spacetime derivative). Note that in the classical limit the Dirac fields
anticommute with each other, W Wg = —WgW7 . Also, similar to the hermitian conjuga-
tion of quantum fields, the complex conjugation of fermionic fields reverses their order:

(FLFy)* = FyFf = —F}F;.

. Another important discrete symmetry is the parity P, the im-proper Lorentz symmetry that
reflects the space but not the time, (x,t) — (—x,+t). This symmetry acts on the Dirac

spinor fields according to

V'(—x,+t) = +7°0(+x, +t) (14)
where the overall + sign is the intrinsic parity of the fermion species described by the U
field.

(a) Verify that the Dirac equation transforms covariantly under (14) and that the Dirac
Lagrangian is invariant (apart from £(x,t) — L(—x,1)).
In the Fock space, eq. (14) becomes

A~

PU(x,t)P = +7°0(—x,1) (15)

for some unitary operator P that squares to one. Let’s find how this operator acts on the

particles and their states.
(b) First, check the plane-wave solutions u(p, s) and v(p, s) from problem (1) and show that
U(-p, 8) = +’)/OU(p, 5) while U(_pu 8) = _PYOIU(pu 8)'

(¢) Now show that eq. (15) implies

PdpaSP = :l:&_p7+3’ Pdi)vsP = :l:dtp,—‘,—S’ (].6)
Pb,,P = Fb_,.,, Pl ,P = ..

and hence
P|F(p,s)) = £|F(-p,+s5)) and P|F(p,s)) = F|[F(-p,+s)). (17

Note that the fermion F and the antifermion F have opposite intrinsic parities!



5. A Dirac spinor field ¥(z) comprises two 2-component Weyl spinor fields,

= (@)
U(x) = (&R(x))' (18)

Spell out the actions of C, P, and CP (combined —bf CandP symmetries on the Weyl
spinors. In particular, show that C and P interchange the two spinors, while the combined

CP symmetry acts on the 17, and the ¥ p independently from each other.

6. Consider the bilinear products of a Dirac field ¥(z) and its conjugate ¥(z). Generally, such
products have form WI'W where I' is one of 16 matrices discussed in the previous homework#7

(problem 4.g); altogether, we have

S = T, VI = Tyh0, TH = Tyl A = TPh0, P = Ti®0. (19)

(a) Show that all the bilinears (19) are Hermitian.
Hint: First, show that (UTW0)" = UTw.

.I.
Note: despite the Fermi statistics, (‘I@Wﬁ) = +\I/E\I!a.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V# and the A as vectors, and the TH as an antisymmetric tensor.

(c¢) Find the transformation rules of the bilinears (19) under parity and show that while S
is a true scalar and V' is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.

Finally, consider the charge-conjugation properties of the Dirac bilinears. To avoid the
operator-ordering problems, take the classical limit where W(z) and ¥T(z) anticommute with

each other, \I/a\I/jg = —\I//Z)\I/a.

(d) Show that C turns WT'W into WI'“W where ['¢ = 4042174042,

(e) Calculate I'® for all 16 independent matrices I' and find out which Dirac bilinears are

C—even and which are C-odd.
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