
PHY–396 K. Problem set #9. Due November 8, 2019.

1. As a warm-up exercise, consider two species of scalar fields, Φ and φ, with a cubic coupling

to each other,

L =
1

2
(∂µΦ)

2 −
M2

2
Φ2 +

1

2
(∂µφ)

2 −
m2

2
φ2 −

µ

2
Φφ2. (1)

(a) Write down the vertices and the propagators for the Feynman rules for this theory.

(b) Suppose M > 2m, so a single Φ particle may decay to two φ particles. Calculate the

rate Γ of this decay (in the rest frame of the original Φ) to lowest order in perturbation

theory.

2. Now consider N scalar fields φi of the same mass m and with O(N) symmetric quartic

couplings to each other,

L =
1

2

∑

i

(∂µφi)
2 −

m2

2

∑

i

φ2i −
λ

8

(

∑

i

φ2i

)2

. (2)

(a) Write down the Feynman propagators and vertices for this theory.

(b) Calculate the tree-level scattering amplitudes M, the partial cross-sections dσ/dΩcm

(in the center-of-mass frame), and the total cross-sections for the following 3 pro-

cesses:

(i) φ1 + φ2 → φ1 + φ2.

(ii) φ1 + φ1 → φ2 + φ2.

(iii) φ1 + φ1 → φ1 + φ1.
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3. Next, consider the so-called linear sigma model comprising N massless scalar or pseu-

doscalar fields πi and a massive scalar field σ with both quartic and cubic couplings to

the pions, specifically

L =
1

2

∑

i
(∂µπi)

2 +
1

2
(∂µσ)

2 −
λ

8

(

∑

i
π2i + σ2 + 2fσ

)2

=
1

2

∑

i

(∂µπi)
2 +

1

2
(∂µσ)

2 −
λf2

2
× σ2

−
λf

2
×
(

σ3 + σ
∑

i
π2i

)

−
λ

8

(

∑

i
π2i + σ2

)2

(3)

Both the masslessness of the πi fields and the specific relations between the quartic cou-

plings, the cubic couplings, and the sigma’s mass M2
σ = λf2 in this model stem from the

spontaneous breaking down of the O(N +1) symmetry, which I shall explain in class later

this semester. I shall also explain the relation of this model to the approximate chiral

symmetry of QCD and hence to the real-life pi-mesons and their low-energy scattering

amplitudes.

But in this homework, you should simply take the Lagrangian (3) as it is, and explore its

implications for the scattering of π particles.

(a) Write down all the vertices and all the propagators for the Feynman rules for this

theory.

(b) Draw all the tree diagrams and calculate the tree-level scattering amplitudes of two

pions to two pions, Mtree(π
j + πk → πℓ + πm).

(c) Show that due to specific relations between the quartic and the cubic couplings in the

Lagrangian (3), in the low-energy limit Etot ≪ Mσ, all the amplitudes Mtree(π
j +

πk → πℓ + πm) become small as O(E2
tot/M

2
σ) or smaller.

Then use Mandelstam’s variables s, t, u to show that when any of the incoming or

outgoing pions’ energy becomes small (while the other pions’ energies are O(Mσ)),

the scattering amplitudes become small as O(Esmall/Mσ) or smaller.

Later in class, we shall learn that this behavior stems from the Goldstone–Nambu

theorem.
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(d) Write down specific tree-level amplitudes, partial cross-sections (in the CM frame),

and total cross-sections for the processes

(i) π1 + π2 → π1 + π2

(ii) π1 + π1 → π2 + π2

(iii) π1 + π1 → π1 + π1

in the low-energy limit Ecm ≪ Mσ.

4. Finally, an exercise in phase-space calculation: the muon decay. Most of the time, a muon

decays into an electron, an electron-flavored antineutrino, and a muon-flavored neutrino,

µ− → e−ν̄eνµ. In a later homework, we shall calculate the tree-level amplitude for

this process in the Standard Model, and then we shall learn how to sum this amplitude

— or rather the |M|2 — over the spin states of the outgoing electron, neutrino, and

antineutrino, and average over the spin states of the initial muon. But for the present

purposes, let me simply give you the result:

|M|2 =
1

2

∑

all

spins

∣

∣

〈

e−, ν̄e, νµ
∣

∣M
∣

∣µ−
〉∣

∣

2
= 64G2

F (pµ · pν̄) (pe · pν), (4)

where GF ≈ 1.17 · 10−5GeV−2 is the Fermi constant.

The following lemma is very useful for three-body decays like µ− → e− + νµ + ν̄e:

For a decay of initial particle of mass M0 into three final particles of respective masses

m1, m2, and m3, the partial decay rate in the rest frame of the original particle is

dΓ =
1

2M0

× |M|2 ×
d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0), (5)

where d3Ω comprises three angular variables parametrizing the directions of the three

final-state particles relative to some external frame, but not affecting the angles between

the three momenta. For example, one may use two angles to describe the orientation of

the decay plane (the three momenta are coplanar, p1 + p2 + p3 = 0) and one more angle

to fix the direction of e.g., p1 in that plane. Altogether,
∫

d3Ω = 4π × 2π = 8π2.
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(a) Prove this lemma.

The electron and the neutrinos are so much lighter then the muon that in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which gives us rather simple limits for the final particles’ energies.

(b) Show that when m1 = m2 = m3 = 0, the kinematically allowed range of the final

particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1

2
M0 while E1 + E2 + E3 = M0. (6)

Note however that for non-zero masses m1,2,3, the allowed energy range becomes

much more complicated.

Experimentally, the neutrinos and the antineutrinos are hard to detect. But it is easy to

measure the muon’s net decay rate Γ = 1/τµ and the energy distribution dΓ/dEe of the

electrons produced by decaying muons.

(c) Integrate the muon’s partial decay rate over the final particle energies and derive first

the dΓ/dEe and then the total decay rate.
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