
PHY–396 K. Problem set #10. Due November 15, 2019.

1. First, a reading assignment: §4.7 of the Peskin&Schroeder textbook about the Feynman

rules of the Yukawa theory. Find out where the sign rules for the fermionic lines come

from. Also find out the origin of the Yukawa potential V (r) ∝ e−mr/r. (There is also

a much shorter explanation of the Yukawa theory and the Yukawa potential on the last

three pages of my notes on QED Feynman rules.

2. Second, a simple QED problem: pair production of muons in electron-positron collisions,

e−e+ → µ−µ+. As I explained in class, there is only one tree diagram for this process,

e− e+

µ− µ+

p1 p2

p′1 p′2

q

which yields the amplitude

〈

µ−, µ+
∣

∣M
∣

∣e−, e+
〉

=
e2

s
× ū(µ−)γνv(µ+)× v̄(e+)γνu(e

−).

(1)

In class I have focused on the un-polarized pair-production cross-section — see my notes

on the subject, — but in this exercise you should focus on the polarized amplitudes for

definite helicities of all 4 particles involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac

spinors u(e−), v(e+), u(µ−), v(µ+) all have definite chiralities,

uL ≈
√
2E

(

ξL

0

)

, uR ≈
√
2E

(

0

ξR

)

,

vL ≈ −
√
2E

(

0

ηL

)

, vR ≈
√
2E

(

ηR

0

)

.

(2)

cf. homework set#8, eq. (7).
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(a) Show that in the approximation (2),

v̄(e+L )γνu(e
−
L ) = v̄(e+R)γνu(e

−
R) = 0, (3)

which means there is no muon pairs production unless the initial electron and positron

have opposite helicities.

(b) Show that the µ− and the µ+ must also have opposite helicities because

ū(µ−L )γ
νv(µ+L) = ū(µ−R)γ

νv(µ+R) = 0. (4)

(c) Let’s work in the center-of-mass frame where the initial e− and e+ collide along the

z axis, pν1 = (E, 0, 0,+E), pν2 = (E, 0, 0,−E). Calculate the 4–vector v̄(e+)γνu(e−)

in this frame and show that

v̄(e+L )γνu(e
−
R) = 2E × (0,−i,+1, 0)ν , v̄(e+R)γνu(e

−
L) = 2E × (0,+i,+1, 0)ν .

(5)

(d) In the CM frame the muons fly away in opposite directions at some angle θ to the

electron / positron directions. Without loss of generality we may assume the muons’

momenta being in the xz plane, thus

p′ν1 = (E,+E sin θ, 0,+E cos θ), p′ν1 = (E,−E sin θ, 0,−E cos θ) (6)

Calculate the 4–vector ū(µ−)γνv(µ
+) for the muons and show that

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,−1,+i sin θ),

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,−1,−i sin θ).

(7)

(e) Now calculate the amplitudes (1) for all possible combinations of particles’ helicities,
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calculate the partial cross-sections, and show that

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.
=

α2

4s
× (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.
=

α2

4s
× (1− cos θ)2,

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L)

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(8)

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section

for the muon pair production.

3. Third, another simple QED problem: Mott scattering of a relativistic electron off a heavy

nucleus of charge +Ze and mass MN ≫ me. As long as the electron’s energy Ee is no

larger than a few tens of MeV, we may treat the nucleus as a point source of the electric

field, and we may also neglect its recoil. Hence, in the CM frame — which is essentially

the nucleus’s frame — we may approximate the nucleus-nucleus-photon vertex as

µ ≈ −iZe×
{

2MN for µ = 0,

0 for µ = 1, 2, 3.
(9)

To be precise, this formula includes the vertex and the external leg factors for the incoming

and outgoing nucleus, but it does not include the photon’s propagator.

In QED, there is only one tree diagram for the Mott scattering, namely

e

e′

N

N ′

(10)

(a) Evaluate this diagram and write down the amplitude M in terms of q = p′ − p and
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ū(p′, s′)γ0u(p, s).

(b) Assume the initial electron beam is un-polarized (i.e., both values of spin s are equally

likely) and the detector for the scattered electron does not measure its spin s′ but

only momentum s′. Show that for such an experiment,

dσ

dΩ
=

(Zα)2

(q2)2
× 1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
(11)

where α = e2/4π (or in conventional units, α = e2/h̄c; anyhow, α ≈ 1/137.)

(c) Sum over the electron spins and show that

1

2

∑

s,s′

∣

∣ū(p′, s′)γ0u(p, s)
∣

∣

2
= 2

(

m2
e + EE′ + p · p′

)

. (12)

(d) Finally, assemble all the factors together and derive Mott formula

(

dσ

dΩ

)

Mott

=

(

dσ

dΩ

)

Rutherford

× 1− β2 sin2(θ/2)

γ2
(13)

where β is the electron’s speed (in c = 1 units), γ = E/me, and

(

dσ

dΩ

)

Rutherford

=
(Zα)2

4m2
eβ

4 sin4(θ/2)
(14)

is the classical Rutherford scattering cross-section (translated into h̄ = c = 1 units).

4. Finally, a non-QED problem on Dirac trace technology. Consider the muon decay into an

electron, an electron-flavored antineutrino, and a muon-flavored neutrino, µ− → e−ν̄eνµ.

In the previous homework#9 (problem 4) you have calculated the phase space factor

for this decay. In the current problem, we shall derive eq. (9.4) for the spin-summed

amplitude you have used last week to calculate the muon decay rate.
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At the tree level of the Standard model, this decay proceeds through a single Feynman

diagram

W− →

µ−

νµ

ν̄e

e−

(15)

Since I have not yet explained the Standard Model in class — although I plan to do it in

December, — let me simply spell out the Feynman rules relevant to this diagram.

• The vertices and the external fermionic legs attached to them are

µ−

νµ

= ū(νµ)

(

−ig2γ
κ 1− γ5

2

)

u(µ−),

ν̄e

e−

= ū(e−)

(

−ig2γ
λ 1− γ5

2

)

v(ν̄e),

(16)

where g2 is the SU(2)W gauge coupling.

• W− is a massive vector particle, so its propagator is

=
−i

q2 −M2
W

(

gκλ −
kκkλ
M2

W

)

−−−−−→
|q|≪MW

igκλ
M2

W

. (17)

The approximation here corresponds to the effective Fermi theory of weak interac-

tions. It is valid for all nuclear beta decays as well as weak decays of all particles

much lighter than MW ≈ 80 GeV. In particular, it is valid for the muon decay in

question.

(a) Assemble the muon decay amplitude (in the Fermi theory approximation) to

M = −GF√
2
×
[

ū(νµ)γ
λ(1− γ5)u(µ−)

]

×
[

ū(e−)γλ(1− γ5)v(ν̄e)
]

(18)

where

GF =
g22

2
√
2M2

W

≈ 1.17 · 10−5GeV−2 (19)

is the Fermi constant of low-energy weak interactions.
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(b) Sum the absolute square of the amplitude (18) over the final particle spins, average

over the initial muon’s spin, and write the result as a product of two Dirac traces,

|M|2 def
=

1

2

∑

all
spins

|M|2 =
G2

F

4
× tr(matrix product #1)× tr(matrix product #2).

(20)

(c) Evaluate the traces in eq. (20).

(d) Sum over the Lorentz indices and show that altogether

|M|2 = 64G2
F (pµ · pν̄) (pe · pν), (21)

exactly as in eq. (9.4) from the previous homework#9.
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