
PHY–396 K. Problem set #12. Due December 6, 2019 (last class day).

1. Let’s start with an exercise in the Higgs mechanism. In the previous homework (set#11,

problem#5), we had the continuous global symmetry group G = SU(N)L×SU(N)R×U(1)

spontaneously broken down to its H = SU(N)V subgroup. Now let’s gauge the entire

G = SU(N)L × SU(N)R × U(1) symmetry and work out the Higgs mechanism.

The present theory comprises N2 complex scalar fields Φ j
i (x) organized into an N × N

matrix, and 2N2 − 1 real vector fields Bµ(x), L
a
µ(x), and Ra

µ(x), the latter organized into

traceless hermitian matrices Lµ(x) =
∑

a L
a
µ(x)× 1

2
λa and Rµ(x) =

∑

aR
a
µ(x)× 1

2
λa, where

a = 1, . . . , (N2 − 1) and λa are the Gell-Mann matrices of SU(N). The Lagrangian is

L = −1
4
BµνB

µν − 1
2
tr (LµνL

µν) − 1
2
tr (RµνR

µν) + tr
(

DµΦ†DµΦ
)

− V (Φ†Φ), (1)

where

Bµν = ∂µBν − ∂νBµ ,

Lµν = ∂µLν − ∂νLµ + ig[Lµ, Lν ],

Rµν = ∂µRν − ∂νRµ + ig[Rµ, Rν ],

DµΦ = ∂µΦ + ig′BµΦ + igLµΦ − igΦRµ ,

DµΦ
† = (DµΦ)

† = ∂µΦ
† − ig′BµΦ

† + igRµΦ
† − igΦ†Lµ .

(2)

For simplicity, I assume equal gauge couplings gL = gR = g for the two SU(N) factors of

the gauge group, but the abelian coupling g′ is different.

The scalar potential V is precisely as in the previous homework,

V =
α

2
tr
(

Φ†ΦΦ†Φ
)

+
β

2
tr2

(

Φ†Φ
)

+ m2 tr
(

Φ†Φ
)

, α, β > 0, m2 < 0, (3)

hence similar VEVs of the scalar fields: up to a gauge symmetry,

〈Φ〉 = C × 1N×N where C =

√

−m2

α +Nβ
, (4)

which breaks theG = SU(N)L×SU(N)R×U(1) symmetry down to the SU(N)V subgroup.
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(a) The Higgs mechanism makes N2 out of 2N2 − 1 vector fields massive. Calculate their

masses by plugging 〈Φ〉 for the Φ(x) into the tr(DµΦ
†DµΦ) term of the Lagrangian.

In particular, show that the abelian gauge field Bµ and the Xa
µ = 1√

2
(La

µ − Ra
µ)

combinations of the SU(N) gauge fields become massive, while the V a
µ = 1√

2
(La

µ+Ra
µ)

combinations remain massless.

(b) Find the effective Lagrangian for the massless vector fields V a
µ (x) by freezing all the

other fields, i.e. setting Bµ(x) ≡ 0, Xa
µ(x) ≡ 0, and Φ(x) ≡ 〈Φ〉. Show that this La-

grangian describes a Yang–Mills theory with gauge group SU(N)V and gauge coupling

gV = g/
√
2.

⋆ For extra challenge, allow for un-equal gauge couplings gL 6= gR. Find which com-

binations of the La
µ(x) and Ra

µ(x) fields remain massless in this case, then derive the

effective Lagrangian for these massless fields by freezing everything else. As in part

(b), you should get an SU(N) Yang–Mills theory, but this time the gauge coupling is

gv =
gLgR

√

g2L + g2R

. (5)

2. Now consider the e+e− → µ+µ− pair production in the Standard Model of electroweak

interactions rather than in just QED. Unlike QED, the Standard Model has 3 three dia-

grams contributing to this process: one with the virtual photon in the s channel, one with

the virtual Z0 gauge boson, and one with the virtual Higgs scalar,

e− e+

µ− µ+

γ

(I)

⊕

e− e+

µ− µ+

Z0

(II)

⊕

e− e+

µ− µ+

H

(III)
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M(e−, e+ → µ−, µ+) = Mγ + MZ + MH . (6)

The first diagram was studied in class and also in the homework set#10. In this problem,

we shall focus on the other two diagrams — especially the diagram (II) with a virtual Z0

— and on their interference with the first diagram.

For simplicity, let’s work in the unitary gauge where the ‘eaten-up’ scalars do not have any

vertices or propagators, while the massive gauge bosons like Z0 have propagators

µ νZ
=

i

q2 −M2
Z + iMZΓZ

×
(

−gµν +
qµqν

M2
Z

)

. (7)

(a) Derive the electron-Z and muon-Z vertices in diagram (II) from the neutral week

current,

L ⊃ −g′Zλ ×
∑

quarks and
leptons

Ψγλ
(

T 31− γ5

2
− Q sin2 θ

)

Ψ, (8)

cf. my notes on the electroweak interactions of quarks and leptons, and write down the

amplitudeMZ . For simplicity, approximate sin2 θ ≈ 1
4
(experimentally, sin2 θ ≈ 0.233)

so that for the charged leptons like the electron or the muon

T 31− γ5

2
− Q sin2 θ =

−1 + γ5

4
+ sin2 θ ≈ γ5

4
, (9)

(b) Assume both the electrons and the muons to be ultra-relativistic (Ec.m. = O(MZ) ≫
mµ, me) and evaluate the amplitude MZ for all possible particle helicities. (Use the

center-of-mass frame.)

Hint: proceed exactly as in homework set#10 (problem 1) for the Mγ amplitude, but

mind the γ5 factors in the vertices and the massive vector propagator for the Z0.

(c) Write down the amplitude MH due to virtual Higgs scalar (diagram III). Also, relate

the Yukawa couplings of the Higgs to the electrons and the muons to the fermion

masses, then argue that these couplings are so much smaller than the gauge couplings

e or g′ that the MH is negligibly small compared to the MZ or Mγ amplitudes.
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(d) Combine the amplitudes due to virtual Z and virtual photon and calculate the po-

larized partial cross-sections dσ(e−e+ → µ−µ+)/dΩ as functions of EM energy2 = s,

scattering angle θ, and helicities of all 4 fermions involved. Specifically, show that

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L )

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(10)

while

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.

=
α2

4s
× |1 + F (s)|2 × (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.

=
α2

4s
× |1− F (s)|2 × (1− cos θ)2,

(11)

where the |1 ± F (s)|2 factor stem from the interference between the virtual-photon

and virtual-Z diagrams.

(e) Finally, assume un-polarized electron and positron beams and a spin-blind muon de-

tector. Calculate the total cross section σ(e+e− → µ+µ−) and the forward-backward

asymmetry

A =
σ(θ < π/2)− σ(θ > π/2)

σ(θ < π/2) + σ(θ > π/2)
(12)

as functions of the total energy Ec.m..

Note: In QED, the tree-level pair production is symmetric with respect to θ → π − θ;

the asymmetry in the Standard Model arises from the interference between the virtual-

photon and virtual-Z diagrams.
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3. Finally, another Standard Model problem. While most weak decays or quarks or leptons

involve a virtual W+ or W− gauge boson, the top quark is so heavy that it decays into a

real (i.e., on-shell) W+ and the bottom quark. The interactions relevant to this process

are contained in

L ⊃ − g

2
√
2
W−

µ Ψbγ
µ(1− γ5)Ψt − g

2
√
2
W+

µ Ψtγ
µ(1− γ5)Ψb . (13)

For your information, αw ≡ (g2/4π) ≈ 1/30, Mt ≈ 173 GeV, MW ≈ 80.5 GeV, and

Mb ≈ 4.5 GeV.

(a) Write down the Feynman vertices for the interactions (13), draw tree diagram(s) for

the t → W+ + b decay, and write down the tree-level decay amplitude.

(b) This amplitude does not satisfy the Ward identity. Write down a simple formula for

kµW ×Mµ.

(c) The W+ gauge boson is a massive particle, so it has 3 distinct spin/polarization states.

Show that its polarization vectors Eµ(k, λ) satisfy

∑

λ

Eµ(k, λ)× E∗ν(k, λ) = −gµν +
kµWkνW
M2

W

, (14)

and consequently, for the W emission amplitude of the form M = Mµ × Eµ(k, λ),

summing |M|2 over the W polarizations yields

∑

λ

|M|2 = −MµM∗
µ +

|Mµk
µ
W |2

M2
W

. (15)

(d) Going back to the top quark decay t → b+W+, sum the |M|2 over both final particles’

spins, average over the initial top quark’s spin, and calculate the decay rate.

For simplicity, you may neglect the bottom quark’s mass compared to masses of the

top quark and of the W boson.
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