
QCD Beta Function

In these notes I shall calculate the one-loop β(g) functions for QCD and other non-

abelian gauge theories. To keep my formulae generic, I allow for any simple gauge group G

— although I call the gauge bosons ‘the gluons’ — with Dirac fermions — which I call ‘the

quarks’ in some multiplet (Q) of G.

As I explained in class, the non-abelian gauge theories do not obey the QED-like Ward

identity Z1 = Z2. Instead, they have weaker identities

Z
(q)
1

Z
(q)
2

=
Z
(gh)
1

Z
(gh)
2

=
Z
(3g)
1

Z3
=

(

Z4g
1

Z3

)1/2

=
g
√
Z3

gbare
, (1)

which nevertheless assure the universality of renormalized gauge coupling g. That is, we

have the same g in all couplings of the non-abelian gauge theory: the quark-gluon coupling,

the ghost-gluon coupling, the 3-gluon coupling, and the square of the same g in the 4-gluon

coupling. In the MS renormalization schemes, the identities (1) translate to linear relations

between the counterterms, or rather the simple 1/ǫ poles of the counterterm. Let Res[δ]

stand for the residue of the pole at ǫ → 0 of the counterterm δ, that is, the coefficient of the

simple 1/ǫ pole regardless of the higher-order poles 1/ǫ2, 1/ǫ3, etc. Then eqs. (1) translate

to

Res
[

δ
(q)
1 − δ

(q)
2

]

= Res
[

δ
(gh)
1 − δ

(gh)
2

]

= Res
[

δ
(3g)
1 − δ3

]

= 1
2 Res

[

δ
(4g)
1 − δ3

]

. (2)

Moreover, each one of these differences in combinations with the δ3 counterterm may be used

to calculate the β function of the gauge theory:

dg(µ)

d logµ
= β(g) = gL̂ Res

[

2δ
(q)
1 − 2δ

(q)
2 − δ3

]

(3.1)

= gL̂ Res
[

2δ
(gh)
1 − 2δ

(gh)
2 − δ3

]

(3.2)

= gL̂ Res
[

2δ
(3g)
1 − 3δ3

]

(3.4)

=
g

2
L̂ Res

[

2δ
(4g)
1 − 4δ3

]

, (3.4)

where L̂ = g2(∂/∂g2) is the number-of-loops operator.
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In these notes, I shall calculate the δ
(q)
2 , the δ

(q)
1 , and the δ3 counterterms to the one-loop

order, and then use eq. (3.1) to calculate the one-loop beta-function.

The δ
(q)
2 Counterterm

At the one-loop level, the quark propagator renormalization comes from a single diagram

ij

a

=
[

−iΣ(6p)
]j

i
= hopefully = −iΣ(6p)× δji

(4)

which evaluates to

∫

d4k

(2π)4
(−igγµ)

i

6p+6k −m+ i0
(−igγν)×

−igµν

k2 + i0
×
(

tata
)j

i
. (5)

(For simplicity, I use the Feynman gauge with ξ = 1 for the gluon’s propagator.) Apart from

the group-theoretical factor
(

tata
)j

i
, the Dirac indexology and the momentum integral here

are exactly as in the electron’s propagator correction in QED, so instead of recalculating

it from scratch, let me simply copy it from the solutions to homework#17 (problem 3).

Focusing on the UV divergence of the integral and disregarding the gory details of the finite

part, we have

−iΣ0(6p) =

∫

d4k

(2π)4
(−igγµ)

i

6p+6k −m+ i0
(−igγν)×

−igµν

k2 + i0

= −i
g2

16π2

(

(−6p + 4m)× 1

ǫ
+ finite

)

.

(6)

Now consider the group theoretical factor. The ta matrices in the quark-gluon vertices rep-

resent the gauge group generators T̂ a in the quark multiplet (Q), so the matrix combination
∑

a tata represent the Casimir operator Ĉ2 =
∑

s T̂
aT̂ a. In any irreducible multiplet (Q),
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this Casimir operators becomes a multiplet-dependent number C(Q) times a unit matrix,

thus

(

tata
)j

i
= C(Q)× δji . (7)

In QCD, the gauge group is SU(3)color, the quarks belong to the fundamental 3 multiplets

(one such multiple for each quark flavor), the Casimir of this multiple is C(3) = 4
3 , and

we may just as well plug in this number into eq. (7) and subsequent formulae. However,

in order to generalize from QCD to other gauge theories — with other gauge groups, and

with fermions belonging to other kinds of multiplets — I am going to keep a generic C(Q)

in these notes.

Altogether, the quark’s propagator correction is

[

Σ(6p)
]j

i
= δji × C(Q)× Σ0(6p) = δji ×

g2C(Q)

16π2
×
(

(−6p + 4m)× 1

ǫ
+ finite

)

, (8)

and to cancel the UV divergence here, we need the counterterms

δ
(q)
2 = −g2C(Q)

16π2
× 1

ǫ
and δ

(q)
m = −m× g2C(Q)

4π2
× 1

ǫ
. (9)

The δ
(q)
m counterterm depends on the quark’s mass m, so it’s different for different quark

flavors, but the δ
(q)
2 counterterm is the same for all flavors, at least in the MS renormalization

scheme.

The δ
(q)
1 counterterm

The δ
(q)
1 counterterm cancels the momentum-independent UV divergence of the quark-

antiquark-gluon vertex

j i

µ a

=
[

−igΓµ,a
]j

i
= hopefully = −igΓµ × (ta)ji .

(10)
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At the one-loop level, there are two diagrams correcting this vertex, namely

ij

µ a

(ν, b)

(1)

ij

µ a

(λ, c) (ν, b)

(2)

(11)

The left diagram here looks just like the electron-photon vertex correction in QED, but the

right diagram is new — it appears only in the non-abelian gauge theories like QCD.

Since we are interested only in the UV divergences of the diagrams, and by power-

counting such divergences should be independent, let’s simplify the calculations by setting

all the external momenta to zero. This also avoids the IR divergences — since the zero quark

momenta are off-shell — and lets us use the same loop momentum kµ for all the propagators

in the loop. Thus, for the left diagram (11.a) we have

[

−igΓµ,a
1 (0, 0)

]j

i
=

∫

d4k

(2π)4
(−igγν)

i

6k −m+ i0
(−igγµ)

i

6k −m+ i0
(−igγν)×

−i

k2 + i0

×
(

tbtatb
)j

i
.

(12)

The Dirac indexology and the momentum integral on the top line looks exactly like its QED

analogue, which was discussed in painful detail in my notes on the QED vertex corrections.

For p′ = p = 0, the algebra becomes much simpler:

Γµ
QED(p

′ = p = 0) = −ig2
∫

d4k

(2π)4
N µ

(k2 −m2 + i0)2(k2 + i0)
(13)
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where

N µ = γν(6k +m)γµ(6k +m)γν

= −26kγµ6k + 8mkµ − 2m2γµ + O(ǫ)

〈〈 after averaging over the directions of kν 〉〉

∼= −2k2

D
× γνγµγν + 0 − 2m2γµ + O(ǫ)

= (k2 − 2m2)× γµ + O(ǫ).

(14)

Consequently,

Γµ
QED(p

′ = p = 0) = g2γµ ×
∫

d4k

(2π)4
−i(k2 − 2m2) + O(ǫ)

(k2 −m2 + i0)2(k2 + i0)

= g2γµ ×
∫

d4kE
(2π)4

(k2E + 2m2) + O(ǫ)

(k2E +m2)2 × k2E

=
g2γµ

16π2

(

1

ǫ
+ a finite constant

)

.

(15)

For the finite p and p′, we would get the same UV divergence but a much more complicated

finite part (cf. my notes for the gory details),

Γµ
QED(p

′, p) =
g2

16π2

(

γµ

ǫ
+ finite function of(p′, p)

)

. (16)

Now consider the group-theoretical factor
(

tbtatb
)j

i
(implicit sum over b) on the second

line of eq. (12). First, using tatb = tbta + [ta, tb] = tbta + ifabctc, we get

tbtatb = tb × tatb = tbtb × ta + tb × ifabctc = C(Q)× ta + ifabctbtc. (17)

Next, in the second term on the RHS we use the antisymmetry fabc = −facb to rewrite

ifabctbtc = ifabc × 1
2 [t

b, tc] = ifabc × 1
2 × if bcdtd = −1

2

(

ifabc ×−if bcd
)

× td. (18)

Finally, we relate the structure constants fabc of the Lie algebra to the matrices representing

the generators in the adjoint multiplet,
(

T a
adj

)bc
= ifabc and

(

T d
adj

)cb
= ifdcb = −if bcd.
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Consequently,

∑

b,c

ifabc×−if bcd = +
∑

b,c

(

T a
adj

)bc(
T d
adj

)cb
= tr

(

T a
adjT

d
adj

)

≡ tradj(T
aT b
)

= R(adj)×δad

(19)

where R(adj) is the index of the adjoint multiplet. As you should see in the homework set#22

(problem 1), for the adjoint multiplet the index is equal to the Casimir, R(adj) = C(adj); it

is commonly denoted C(G) where G stands for the gauge group itself. Thus,

ifabctbtc = −1
2C(G)× ta (20)

and therefore
∑

b

tbtatb =
(

C(Q)− 1
2C(G)

)

× ta. (21)

Altogether, the first diagram (11.1) yields

[

−igΓµ,a
1 (p′, p)

]j

i
= −igΓµ

1 (p
′, p)× (ta)ji

for Γµ
1 (p

′, p) = +
(

C(Q)− 1
2C(G)

)

× g2

16π2
× γµ

ǫ
+ finite.

(22)

⋆ ⋆ ⋆

Now consider the second diagram (11.2) with two gluon propagators and one three-gluon

vertex. At zero external momenta, this diagram evaluates to

[

−igΓµ,a
2 (0, 0)

]j

i
=

∫

d4k

(2π)4
(−igγλ)

i

6k −m+ i0
(−igγν)×

( −i

k2 + i0

)2

×

×
[

gλµkν + gµνkλ − 2gνλkµ
]

×
(

tbtc
)j

i
×
(

−gf cab
)

.

(23)

The second line here (and also the −gf cab factor on the third line) stems from the three-

gluon vertex. Note that if we treat all gluons’ momenta as flowing in to the vertex, then the

left gluon has momentum k1 = +k, the right gluon has momentum k3 = −k, and the top

gluon has k2 = 0, hence

[

gλµ(k1 − k2)
ν + gµν(k2 − k3)

λ + gνλ(k3 − k1)
µ
]

=
[

gλµkν + gµνkλ − 2gνλkµ
]

(24)

on the second line of eq. (23).
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The group factor on the third line of eq. (23) is an expression we have already evaluated.

Indeed, multiplying both sides of eq. (20) by ig, we have

−g
(

f cab = fabc
)

×
(

tbtc
)j

i
= −ig × C(G)

2
×
(

ta
)j

i
. (25)

Consequently,

[

−igΓµ,a
2

]j

i
= −igΓµ × (ta)ji (26)

for

Γµ
2 (0, 0) =

ig2C(G)

2
×
∫

d4k

(2π)4
γλ(6k +m)γν

(k2 −m2 + i0)(k2 + i0)2
×
[

kλgµν + kνgµλ − 2kµgνλ
]

. (27)

(The color-index dependence (26) is valid for all external momenta, but the integral (27) is

specialized for p′ = p = 0 only.)

Combining all the factors in the numerator inside the integral (27), we obtain

N µ = γλ(6k +m)γν ×
[

kλgµν + kνgµλ − 2kµgνλ
]

=6k(6k +m)γµ + γµ(6k +m)6k − 2kµ × γν(6k +m)γν

= 2k2 × γµ + 2mkµ + 2kµ ×
(

(D − 2)6k − Dm
)

= (2k2gµν + 2(D − 2)kµkν)× γν − 2(D − 1)mkµ

〈〈 after averaging over the directions of kν 〉〉
∼=
(

2k2 +
2(D − 2)

D
k2
)

gµν × γν

= (3 +O(ǫ))× k2 × γµ,

(28)

and therefore

Γµ
2 (0, 0) =

3 +O(ǫ)

2
× g2C(G)× γµ ×−i

∫

d4k

(2π)4
k2

(k2 −m2 + i0)(k2 + i0)2

=
3 +O(ǫ)

2
× g2C(G)× γµ ×

∫

d4kE
(2π)4

k2E
(k2E +m2)× (k2E)

2

=
3 +O(ǫ)

2
× g2C(G)× γµ ×

(

1

16π2
× 1

ǫ
+ finite

)

=
g2

16π2
× 3C(G)

2
× γµ

ǫ
+ finite.

(29)
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⋆ ⋆ ⋆

Combining the two diagrams’ (11) contribution, we obtain

[

−igΓµ,a
1+2(p

′, p)
]j

i
= −igΓµ

1+2(p
′, p)× (ta)ji, (30)

where at zero momenta p′ = p = 0 we have

Γµ
1+2(0, 0) = γµ × g2

16π2
×
(

(

C(Q)− 1
2C(G) + 3

2C(G)
)

× 1

ǫ
+ finite constant

)

, (31)

while at finite momenta p and p′ we expect the same UV divergence but a very different

finite piece

Γµ
1+2(p

′, p) = +
g2

16π2
(C(Q) + C(G))

(

γµ

ǫ
+ finite fµ(p′, p)

)

. (32)

To cancel the UV divergence here, we need the one-loop counterterm

δ
(q)
1 = − g2

16π2
(C(Q) + C(G))× 1

ǫ
. (33)

Note that in QCD — or in any other non-abelian gauge theory — the δ
(q)
1 and the δ

(q)
2

counterterms are not equal to each other — they have different group-theoretical factors:

C(Q)+C(G) for the δ
(q)
1 versus C(Q) for the δ

(q)
2 . However, in gauge theories where fermions

belong to several inequivalent irreducible multiplets (r) of the gauge group G, the difference

δ
(r)
1 − δ

(r)
2 is universal:

same δ
(r)
1 − δ

(r)
2 = −g2C(G)

16π2
× 1

ǫ
∀(r). (34)

Even at the higher loop orders, the differences δ
(r)
1 − δ

(r)
2 — or at least the 1/ǫ parts of these

differences — are the same for fermions in any multiplet (r) of the gauge group,

same Res
[

δ
(r)
1 − δ

(r)
2

]

∀(r). (35)

This universality is the special case of the relations (2), which assure that all the coupling

of the gauge theory have the same renormalized coupling g(µ).
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The δ3 Counterterm

At the one-loop order, the self-energy corrections to the gluons come from 5 diagrams:

(1) (2) (3) (4) (5)

where the fifth diagram’s contribution

[

Σµν
5 (k)

]ab
= −δ3 ×

(

k2gµν − kµkν
)

× δab (37)

cancels the UV divergences of the first 4 diagrams. So let’s calculate those divergences.

The first diagram — the quark loop — gives us

[

iΣµν
1 (k)

]ab
= hopefully = δab × iΣµν(k)

= −
∫

d4p

(2π)4
tr

(

(−igγµ)
i

6p−m+ i0
(−igγν)

i

6p+6k −mi0

)

× tr
(

ta(q) t
b
(q)

)

,

(38)

where the first trace is over the Dirac indices while the second trace is over the quarks’ colors

and flavors. For a single quark multiplet (m) of the gauge group G

tr
(

ta(m) t
b
(m)

)

= δab × R(m) (39)

where R(m) is the index of the multiplet (m). For several quark multiplets, their contribu-

tions add up, thus

tr
(

ta(q) t
b
(q)

)

= δab × Rnet = δab ×
∑

quark
multiplets

R(multiplet). (40)

In particular, in QCD the quarks comprise Nf copies of a fundamental N multiplet of the
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SU(N) gauge group — one fundamental multiplet for each flavor — hence

Rnet = Nf ×R(fundamental) = Nf ×
1

2
. (41)

Apart from this group factor, the rest of the quark loop (38) looks exactly like the electron

loop in QED. We have calculated that loop back in February — cf. my notes — so let me

simply recycle the result in the present context:

[

Σµν
1 (k)

]ab
= δab ×

(

k2gµν − kµkν
)

× −g2

12π2
×Rnet ×

(

1

ǫ
+ finite

)

. (42)

Consequently, the counterterm needed to cancel this divergence is

δ3(1
st) = − g2

16π2
× 1

ǫ
× 4

3
Rnet (43)

for a general gauge theory; for QCD

δ3(1
st) = − g2

16π2
× 1

ǫ
× 2

3
Nf . (44)

⋆ ⋆ ⋆

Now consider the second diagram — the gluon loop

µ ν

a b

(α, c)

(β, d)

k −→ k −→

p1

p2

(45)

Evaluating this diagram in the Feynman gauge, we get

[

iΣµν
2 (k)

]ab
=

1

2

∫

d4p1
(2π)4

−i

p21 + i0
× −i

p22 + i0
×−gfacdV µαβ(k, p1, p2)×

×−gf bcdV ν
αβ(−k,−p1,−p2)

(46)

where 1
2 is the symmetry factor due to 2 similar gluon propagators, their momenta add to

p1 + p2 = −k, and the V ’s are the momentum- and Lorentz-index-dependent parts of the
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3–gluon vertices,

V µαβ(k, p1, p2) = gαβ(p1 − p2)
µ + gβµ(p2 − k)α + gµα(k − p1)

β ,

V ναβ(−k,−p1,−p2) = −V ναβ(k, p1, p2).
(47)

Let’s start with the group factor in eq. (46). As we saw a few pages above in eq. (19),

∑

bc

facd × f bcd =
∑

bc

(

−iT a
adj

)cd ×
(

+iT b
adj

)dc
= + tr

(

T a
adjT

b
adj

)

= δab × R(adjoint) (48)

where

R(adjoint) = C(adjoint), often denoted C(G); (49)

for an SU(N) gauge group, C(G) = N .

Plugging the group factor into eq. (46) and assembling all the constant factors, we obtain

[

Σµν
2 (k)

]ab
= δab × g2

2
C(G)×

∫

d4p1
(2π)4

−iN µν
2

(p21 + i0)× (p22 + i0)
(50)

where the numerator is

N µν
2 = −V µαβ(k, p1, p2)× V ν

αβ(−k,−p1,−p2) = +V µαβ(k, p1, p2)× V ν
αβ(k, p1, p2)

= D × (p1 − p2)
µ(p1 − p2)

ν + gµν × (p2 − k)2 + gµν × (k − p1)
2

+ (p1 − p2)
(µ(p2 − k)ν) + (p2 − k)(µ(k − p1)

ν) + (k − p1)
(µ(p1 − p2)

ν)

(51)

The second line here has form

A(µBν) + B(µCν) + C(µAν) = (A+B+C)µ(A+B+C)ν − AµAν − BµBν − CµCν ; (52)

moreover,

A + B + C = (p1 − p2) + (p2 − k) + (k − p1) = 0. (53)

Consequently, the numerator (51) simplifies to

N µν
2 = D × (p1 − p2)

µ(p1 − p2)
ν + gµν × (p2 − k)2 + gµν × (k − p1)

2

− (p1 − p2)
µ(p1 − p2)

ν − (p2 − k)µ(p2 − k)ν − (k − p1)
µ(k − p1)

ν

= gµν ×
[

(p2 − k)2 + (k − p1)
2
]

+ (D − 1)× (p1 − p2)
µ(p1 − p2)

ν

− (p2 − k)µ(p2 − k)ν − (k − p1)
µ(k − p1)

ν .

(54)

As usual, the first step in evaluating the momentum integral like (50) is to simplify the
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denominator using the Feynman parameters. By momentum conservation p2 ≡ −k − p1,

hence

1

(p21 + i0)(p22 + i0)
=

1
∫

0

dx
[

(1− x)p21 + x(p1 + k)2 + i0
]2 =

1
∫

0

dx

[ℓ2 −∆+ i0]2
(55)

where

ℓ = p1 + xk and ∆ = −x(1 − x)k2. (56)

Plugging this denominator int eq. (50) we get

Σµν
2 (k) = −i

g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
N µν

2

[ℓ2 −∆+ i0]2
, (57)

and now we need to re-express the numerator in terms of the shifted momentum ℓ. Using

p1 = +ℓ− xk and p2 = −ℓ− (1− x)k, we obtain

p1 − p2 = 2ℓ − (2x−1)k, p2 − k = −ℓ + (x−2)k, k − p1 = −ℓ + (x+1)k, (58)

and hence

N µν
2 = gµν ×

[

(−ℓ+ (x− 2)k)2 + (−ℓ+ (x+ 1)k)2
]

+ (D − 1)×
(

2ℓ− (2x− 1)k
)µ(

2ℓ− (2x− 1)k
)ν

− (−ℓ+ (x− 2)k)µ(−ℓ + (x− 2)k)ν − (−ℓ + (x+ 1)k)µ(−ℓ+ (x− 2)k)ν .
(59)

This whole big mess is a quadratic polynomial in ℓ and k, but the mixed terms like (ℓk) or

ℓµkν are odd with respect to ℓ → −ℓ and hence cancel out from the momentum integral (57).

Thus, keeping only the terms carrying two or zero ℓ’s, we arrive at

N µν
2 = gµν ×

[

2ℓ2 + A× k2
]

+ B × ℓµℓν + C × kµkν (60)

where

A = (x− 2)2 + (x+ 1)2 = 5 − 2x(1− x), (61)

12



B = (D − 1)× 4 − 1 − 1 = 4D − 6, (62)

C = (D − 1)× (2x− 1)2 − (x− 2)2 − (x+ 1)2

= (D − 6) − (4D − 6)× x(1 − x). (63)

Moreover, in the context of the momentum integral (57),

ℓµℓν ∼= ℓ2

D
× gµν , (64)

hence

N µν
2

∼= gµνℓ2 ×
(

2 +
B

D

)

+ (A + C)× gµν k2 − C ×
(

(gµνk2 − kµkν
)

=
(

k2gµν − kµkν
)

×N good
2 + gµν ×N bad

2 ,

(65)

where

N good
2 = −C = (6−D) + (4D − 6)x(1− x), (66)

N bad
2 = ℓ2 ×

(

2 +
B

D

)

+ k2 × (A+ C)

= ℓ2 ×
(

6− 6

D

)

+ k2 × (D − 1)(1− 4x+ 4x2). (67)

Obviously, the N good
2 has the right tensor structure for the gluon’s self-energy corrections,

while theN bad
2 has the wrong tensor structure. In the context of the momentum integral (57),

the bad term N bad
2 does not integrate to zero. However, its integral cancels against integrals

of the similar bad terms stemming from the two two remaining diagrams.

To see how the cancellation works, let us postpone taking the momentum integral (57)

until we have evaluated the sideways gluon loop and the ghost loop diagrams and brought

them to a similar form

[

Σµν
3 (k)

]ab
= δab × g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
−iN µν

3

[ℓ2 −∆+ i0]2
, (68)

[

Σµν
4 (k)

]ab
= δab × g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
−iN µν

4

[ℓ2 −∆+ i0]2
, (69)
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for some numerators N µν
3 and N µν

4 , then we are going to add up the numerators,

N µν
234 = N µν

2 + N µν
3 + N µν

4 , (70)

split the net numerator into the ‘good’ and the ‘bad’ tensor structures,

N µν
234 = N good

234 ×
(

gµνk2 − kµkν
)

+ N bad
234 × gµν , (71)

and only then take the momentum integral.

⋆ ⋆ ⋆

For the sideways gluon loop

(a, µ)

(b, ν)

(c, α)

(d, β)

p

(72)

we have

[

iΣµν
3 (k)

]ab
=

1

2

∫

d4p

(2π)4
−igαβδ

cd

p2 + i0
×−ig2







fabef cde(gµαgνβ − gµβgβα)

+ facef bde(gµνgαβ − gµβgαν)

+ fadef bce(gµνgβα − gµαgβν)






(73)

where the overall factor 1
2 comes from the symmetry of the propagator. The group factors

in this amplitude evaluate to

δcd × fabef cde = 0,

δcd × facef bde = facef bce = C(G)× δab,

δcd × fadef bce = facef bce = C(G)× δab,

(74)

14



— cf. eq. (48), — and consequently

δcd × [· · ·] = C(G)δab ×
(

2gµνgαβ − gµ(αgβ)ν
)

(75)

and

gαβδ
cd × [· · ·] = C(G)δab × (2D − 2)gµν . (76)

Plugging this result into eq. (73), we obtain

[

Σµν
3 (k)

]ab
= δab × g2C(G)× i(D − 1)gµν

∫

d4p

(2π)4
1

p2 + i0
(77)

Instead of directly evaluating the momentum integral here, we are going to combine the

integrand with the other one-loop diagrams. Since this diagram has only one propagator

rather than two, we may identify the loop momentum p here as either p1 or p2 = −p1−k —

as long as our UV regulator allows constant shifts of the integration variable, both choices

are equivalent. For symmetry’s sake, let’s take the average between the two choices and

identify

1

p2 + i0
→ 1/2

p21 + i0
+

1/2

p22 + i0
=

p21 + p22
2(p21 + i0)(p22 + i0)

=

1
∫

0

dx
(ℓ− xk)2 + (−ℓ− (1− x)k)2

2[ℓ2 −∆+ i0]2

(78)

Consequently, the amplitude (77) takes form (68) for the numerator

N µν
3 = (1−D)gµν×

[

(ℓ−xk)2 + (−ℓ−(1−x)k)2
] ∼= (1−D)gµν×

[

2ℓ2 + (1−2x+2x2)k2
]

.

(79)

In terms of the ‘good’ and the ‘bad’ tensor structures along the lines of eq. (65), this whole

numerator is ‘bad’, thus

N good
3 = 0, (80)

N bad
3 = (1−D)×

[

2ℓ2 + (1− 2x+ 2x2)k2
]

. (81)
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⋆ ⋆ ⋆

Finally, there is the ghost loop diagram

µ ν

a b

c

d

k −→ k −→

p1

p2

(82)

which evaluates to

[

iΣµν
4 (k)

]ab
= −

∫

d4p1
(2π)4

i

p21 + i0
× i

p22 + i0
×−gfacdpµ2 ×−gf bdcpν1 . (83)

Note: the ghost propagators are oriented and go in opposite directions, so this diagram does

not have the symmetry factor 1
2 . Instead, it carries an overall minis sign for the fermionic

loop. Another minus sign hides in the group factor:

facdf bdc = −facdf bcd = −C(G)× δbc (84)

Consequently,

[

iΣµν
4 (k)

]ab
= δab × g2

2
C(G)×

∫

d4p1
(2π)4

+2i pµ2p
ν
1

(p21 + i0)(p22 + i0)
(85)

for p2 = +p1 + k. Combining the two denominator factors via the Feynman parameter

integral, this amplitude takes form (69) for the numerator

N µν
4 = −2pµ2p

ν
1

= −2(ℓ− xk + k)µ(ℓ− xk)ν

∼= −2ℓµℓν + 2x(1− x)kµkν

∼= − 2

D
ℓ2 × gµν + 2x(1− x)kµkν ,

(86)

or in terms of ‘good’ and ‘bad’ tensor structures,

N good
4 = −2x(1− x), (87)
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N bad
4 = − 2

D
× ℓ2 + 2x(1 − x)× k2. (88)

⋆ ⋆ ⋆

Now let’s total up the numerators of the three diagrams according to the ‘good’ and

‘bad’ tensor structures:

N234 = N good
234 ×

(

k2gµν − kµkν
)

+ N bad
234 × gµν , (89)

where

N good
234 = N good

2 + N good
3 + N good

4

=
[

(6−D) + (4D − 6)× x(1− x)
]

+ 0 +
[

−2x(1 − x)
]

= (6−D) + 4(D − 2)× x(1 − x), (90)

N bad
234 = N bad

2 + N bad
3 + N bad

4

=

[(

6− 6

D

)

× ℓ2 + (D − 1)(1− 4x+ 4x2)× k2
]

+
[

−2(D − 1)× ℓ2 − (D − 1)(1− 2x+ 2x2)× k2
]

+

[

− 2

D
× ℓ2 + 2x(1− x)× k2

]

= ℓ2 ×
(

8− 8

D
− 2D

)

+ k2 × (−2D + 4) x(1− x)

=
2(D − 2)

D
×
(

D ×∆ − (D − 2)× ℓ2
)

, (91)

where ∆ = −x(1 − x)k2, exactly as in the denominator of the momentum integral.

The net bad-tensor-structure term in the net numerator does not vanish, but it integrates

to zero. Or rather, the dimensionally regularized integral of the bad term integrates to zero
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in any dimension D for which the integral converges (which takes D < 2). Indeed,

∫

dDℓ

(2π)D
−iN bad

234 (ℓ)

[ℓ2 −∆+ i0]2
= (92)

=
2(D − 2)

D
×
∫

dDℓ

(2π)D
−i
(

D∆ − (D − 2)ℓ2
)

[ℓ2 −∆+ i0]2

=
2(D − 2)

D
×
∫

dDℓE
(2π)D

(D∆ + (D − 2)ℓ2E
(ℓ2E +∆)2

=
2(D − 2)

D
×
∫

dDℓE
(2π)D

(

D − 2

ℓ2E +∆
+

2∆

(ℓ2 + E +∆)2

)

=
2(D − 2)

D

∫

dDℓE
(2π)D

∞
∫

0

dt
(

(D − 2) + 2∆× t
)

× exp
(

−t(ℓ2E +∆)
)

=
2(D − 2)

D

∞
∫

0

dt
(

(D − 2) + 2∆× t
)

× e−t∆ ×
(
∫

dDℓE
(2π)D

e−tℓ2E = (4πt)−D/2

)

=
2(D − 2)

D(4π)D/2
×
(

(D − 2)× Γ
(

1− D
2

)

∆
D

2
−1 + 2∆× Γ

(

2− D
2

)

∆
D

2
−2
)

=
4(D − 2)

D(4π)D/2
×∆

D

2
−2 ×

(

(

D
2 − 1

)

Γ
(

1− D
2

)

+ Γ
(

2− D
2

)

)

(92)

because

(

D
2 − 1

)

× Γ
(

1− D
2

)

+ Γ
(

2− D
2

)

= 0. (93)

Thus, the net vacuum polarization tensor for the gluons does have the right k dependence,

[

Σµν
234(k)

]ab
= δab ×

(

k2gµν − kµkν
)

× Π234(k
2) (94)

where

Π234 =
g2C(G)

2
×

1
∫

0

dx

∫

d4ℓ

(2π)4
−iN good

234

(ℓ2 −∆+ i0)2
. (95)

Since the numerator N good
234 does not depend on the loop momentum ℓ but only on the
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Feynman parameter x, the momentum integral here becomes the familiar

∫

d4ℓ

(2π)4
−i

(ℓ2 −∆+ i0)2
=

∫

d4ℓE
(2π)4

1

(ℓ2E +∆)2
−−→
DR

1

16π2

(

1

ǫ
+ finite(x)

)

. (96)

Consequently

Π2+3+4(k
2) = +

g2C(G)

32π2
×

1
∫

0

dxNgood(x,D)×
(

1

ǫ
+ finite(x, k2)

)

= +
g2C(G)

32π2
×





1

ǫ
×

1
∫

0

dxNgood(x,D = 4) + finite(k2)



 .

(97)

Note that the UV divergence here — the pole at ǫ → 0 — obtains from the N good
234 at D = 4

(since the difference between the N at D = 4− 2ǫ and at D = 4 is O(ǫ)), thus

N good
234 (x) = (6−D) + 4(D−2)×x(1−x) → 2 + 8x(1−x) =⇒

1
∫

0

dxN good
234 (x) → 10

3
.

(98)

Therefore,

Π234 = +
g2

16π2
× 5C(G)

3
×
(

1

ǫ
+ finite(k2)

)

, (99)

and the δ3 counterterm which cancels this divergence is

δ3(2
nd + 3rd + 4th) = +

g2

16π2
× 5C(G)

3
× 1

ǫ
. (100)

Finally, adding the quark loops’ contribution (43), we arrive at the complete one-loop δ3

counterterm,

δ3 =
g2

16π2
×
(

5

3
C(G) − 4

3
Rnet(quarks)

)

× 1

ǫ
. (101)
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The Beta Function

Now that we have the one-loop counterterms δ
(q)
2 , δ

(q)
1 , and δ3, we may use them to

obtain the one-loop β-function for the gauge coupling. According to eq. (3.1),

β1 loop = g × Res
[

2δ
(q)
1 − 2δ

(q)
2 − δ3

]1 loop

= g ×
[

2× −g2
(

C(Q) + C(G)
)

16π2
− 2× −g2C(Q)

16π2
− g2

(

5
3C(G)− 4

3Rnet(Q)
)

16π2

]

=
g3

16π2
×
(

−11

3
C(G) +

4

3
Rnet(Q)

)

.

(102)

For the QCD and for QCD-like theories with an SU(Nc) gauge group and Nf flavors of

fundamental multiplets of quarks, C(G) = Nc, Rnet(Q) = Nf × 1
2 , hence

β1 loop(g) =
g3

16π2

(

−11

3
Nc +

2

3
Nf

)

. (103)

Note the negative coefficient of the Nc-dependent term. Consequently, for Nf < 11
2 Nc, the

whole β-function is negative — or at least it’s negative for a weak enough coupling g —

which makes QCD or a QCD-like gauge theory asymptotically free. For more general gauge

theories with fermions, the asymptotic freedom requires

Rnet(all the fermions) <
11

4
C(G). (104)

More General Gauge Theories

For completeness sake, let me give you a formula for the one-loop beta function for any

gauge theory coupled to several kinds of ‘matter’ fields: Dirac fermions like the quarks, but

also chiral Weyl fermions (left-handed or right-handed only), Majorana fermions, complex

scalars, or real scalars. In general, the Dirac fermions, the Weyl fermions, and the complex

scalars can be in any multiplets of the gauge group G, while the Majorana fermions and the

real scalars must be in real multiplets of G.
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As required by the gauge coupling universality, for any kind of the matter multiplets

—fermionic or scalar — coupled to G we should have the same difference δ1 − δ2 as for the

quarks: To all loop orders

same Res
[

δ
(m)
1 − δ

(m)
2

]

∀ matter multiplet (m), (105)

and specifically at one loop,

δ
(m)
1 − δ

(m)
2 = −g2C(G)

16π2
× 1

ǫ
∀ matter multiplet (m), (106)

cf. eq. (34) for the multiplets of Dirac fermions. But let me skip the proof of these formulae

and focus on the δ3 counterterm.

At the one loop level, multiplets of Majorana or Weyl fermions affect the δ3 counterterm

similarly to the Dirac fermions, via the loop

(36.1)

However, for the Majorana fermions, the solid lines have no arrows, which gives the diagram

an extra symmetry factor 1/2. Consequently, their contribution to the δ3 counterterm is 1
2

of what the Dirac fermions in the same multiplets would contribute,

δ3(Majorana) = − g2

16π2
× 4/3

2
Rnet(Majorana)× 1

ǫ
. (107)

For the Weyl fermions, the solid lines in the diagram (36.1) do have arrow — which avoids

the 1
2 symmetry factor, — but the vertices have extra chiral projection factors 1

2(1∓γ5) onto

left or right chiralities, which changes the trace over the Dirac indices to

tr

(

(−igγµ)
1∓ γ5

2
× i

6p+ i0
× (−igγν)

1∓ γ5

2
× i

6p+6k + i0

)

. (108)

To evaluate this trace we use the anticommutativity of the γ5 matrix with the γµ and hence
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with the massless fermion propagators, and also (1∓ γ5)2 = 2(1∓ γ5). Consequently,

tr
(

Weyl) =
1

4
× tr

(

(1± γ5)2 × (−igγµ)× i

Dp+ i0
× (−igγν)× i

6p+6k + i0

)

=
1

2
× tr

(

(−igγµ)× i

Dp+ i0
× (−igγν)× i

6p+6k + i0

)

± 1

2
× tr

(

γ5 × (−igγµ)× i

Dp+ i0
× (−igγν)× i

6p+6k + i0

)

=
1

2
× tr

(

Dirac
)

± 1

2
× tr

(

extra
)

,

(109)

where the ‘extra’ trace on the bottom line vanishes by the Lorentz symmetry after integrating

over the loop momentum p. Indeed,

tr
(

extra
)

= g2 × tr

(

γ5 × γµ
1

6p+ i0
γν

1

6p+6k + i0

)

=
g2

(p2 + i0)((p+ k)2 + i0)
×











tr
(

γ5γµ6pγν(6p+6k)
)

= 4iǫµλνρpλ(p+ k)ρ

= 4iǫµλνρpλkρ

by the antisymmetry of ǫµλνρ











= 4ig2ǫµνρλ kρ ×
pλ

(p2 + i0)((p+ k)2 + i0)
.

(110)

By Lorentz, symmetry, when we integrate the p-dependent factor here over p, we obtain

∫

dDp

(2π)D
pλ

(p2 + i0)((p+ k)2 + i0)
= (scalar)× kλ , (111)

hence
∫

dDp

(2π)D
tr
(

extra
)

= 4ig2ǫµνρλ kρ × (scalar)× kλ = 0 (112)

by the antisymmetry of the ǫµνρλ tensor. Consequently, eq. (109) for the trace over a loop

of Weyl fermions simplifies to

tr
(

Weyl) ∼= 1

2
× tr

(

Dirac), (113)

so the whole loop diagram for a Weyl fermion multiplet is precisely 1
2 of what we would get
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for a similar multiplet of Dirac fermions. Thus, just like for the Majorana fermions,

δ3(Weyl) = − g2

16π2
× 4/3

2
Rnet(Weyl)× 1

ǫ
. (114)

For the complex scalars, we have two one-loop diagrams

+

(115)

These diagrams look exactly similar to the diagrams renormalizing the gauge coupling in

the scalar QED, which you should have evaluated in homework set#16. The only difference

from the scalar QED is that the scalar’s electric charge2 (in units of e2) is replaced by the

trace over the color indices

trcolors
(

tatb
)

= δab ×R(scalar multiplet). (116)

All other aspects of the two diagrams — the Lorentz indexology and the momentum integrals

— work exactly as for the scalar QED, so copying the formula for the scalar QED’s δ3 from

the solutions to homework#16 and multiplying by the group factor (116), we obtain

δ3(complex scalars) = − g2

16π2
× 1

3
× Rnet(complex scalars)× 1

ǫ
. (117)

Finally, for the real scalars we have two one-loop diagrams similar to (115), but without

the arrows on the dotted lines. Consequently, both diagrams get an overall symmetry factor

1/2, hence the δ3 counterterm as in eq. (117) times 1
2 ,

δ3(real scalars) = − g2

16π2
× 1/3

2
×Rnet(real scalars)×

1

ǫ
. (118)
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Altogether, for a gauge theory with a simple gauge group G and matter (fermionic and/or

scalar) in some multiplets (m), we have

β1 loop(g) =
g3

16π2
×

∑

all physical
multiplets

R(multiplet)×















































−11
3 for the gauge fields,

+4
3 for Dirac fermions,

+2
3 for Majorana fermions,

+2
3 for chiral Weyl fermions,

+1
3 for complex scalar fields,

+1
6 for real scalar fields.

(119)

In this formula, the gauge fields’ contribution includes both the vector fields Aa
µ themselves

as well as the ghosts ca and c̄a, so please do not count the ghosts as separate multiplets.

Note that only the non-abelian gauge fields give negative contributions to the β function,

all other fields’ contributions are positive. Consequently, only the non-abelian gauge theories

can be asymptotically free, and only when there are not too many fermionic or scalar fields

coupled to the gauge fields. For example, the QCD-like theories are asymptotically free only

for Nf < 11
2 Nc.

In a theory with a product gauge group G = G1 ⊗ G2 ⊗ · · ·, each component group Gi

— abelian or non-abelian — has its own gauge coupling gi. At the one-loop level, the beta

functions of each gi are independent from each other, and also from the other couplings like

Yukawa of λφ4, thus

∀i, βi =
g3i

16π2
× bi +

g3i
(4π)4

× O(g2i , other g
2
j , yukawa

2, λ) (120)

where bi are the numerical factors which obtain exactly as the factor multiplying g3/16π2 in

eq. (119). However, for each bi you should count multiplets of the appropriate Gi without

paying attention to the other gauge groups Gj . For example, a bi-fundamental (m,n)

multiplet of an SU(m)⊗ SU(n) gauge group counts as m fundamental multiplets of SU(n)

when you calculate the βn, — or as n fundamental multiplets of SU(m) when you calculate

the βm, — thus

RSU(m)((m,n)) = n×R((m)) = m× 1
2 , RSU(n)((m,n)) = m×R((n)) = n× 1

2 . (121)

And for the abelian U(1) factors, the index of a charged singlet is simply its charge squared,

while the index of a complete multiplet WRT all the other Gj factors is R = (multiplet size)×
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(abelian charge)2. For example, in the Standard Model SU(3)× SU(2)× U(1), a multiplet

(m of SU(3);n of SU(2); hypercharge = y) has

RU(1)((m,n, y)) = mn× y2. (122)
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