Dirac Trace Techniques

Consider a QED amplitude involving one incoming electron with momentum p and spin
s, one outgoing electron with momentum p’ and spin s’, and some photons. There may
be several Feynman diagrams contributing to this amplitude, but they all have the same
external legs and the corresponding factors u(p, s) and a(p’, s’). Consequently, we may write

the amplitude as
{e7, .. Mle™,...y = a(p/,s)Tu(p,s) (1)
where I' is comprises all the other factors of the QED Feynman rules; for the moment, we

don’t want to be specific, so I' is just some kind of a 4 x 4 matrix.

In many experiments, the initial electrons come in un-polarized beam, 50% having spin

s = —l—% and 50% having s = —%. At the same time, the detector of the final electrons

measures their momenta p’ but is blind to their spins s’. The cross-section & measured by
such an experiment would be the average of the polarized cross-sections o (s, s’) with respect

to initial spins s and the sum over the final spins s’, thus

_ 1
g = 5220(5, ). (2)
s s’
Similar averaging / summing rules apply to the un-polarized partial cross-sections,
dCT . lzzda(s,s’) (3)
aa 2 ~ % aqQ -’

etc., etc. Since all total or partial cross-sections are proportional to mod-squares |M|? of

amplitudes M, we need to know how to calculate
Tz def 1 Nk
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for amplitudes such as (1).



To do such a calculation efficiently, we need to recall two things about Dirac spinors.

First,
If M = a(p,sTu(p,s) then M* = u(p,s)Tu(p,s) (5)

where T = 79T is the Dirac conjugate of the matrix T'; for a product 7y - - -, of Dirac

matrices, Y- -7y = Yy - - Y. Second,
S a0 ) X Ts(p:5) = 0+ mas (6)

and likewise

Z uw(p/, 3/) X aé(pla 5/) = (Jé/ + m)'y(i . (7)

s/

Combining these two facts, we obtain

YoM =a, s Tulp,s)* =D alp,s)Tulp,s) x ulp, s)Tu(p’, s)

8,8’ s,8’
IZ Zuap s') Lo ta(p, 5) Zuﬂp, ) Ty uy (1, 5)
s,s' 5, By

= Z Tse fﬁfy X (Z U (p, 3) ﬂg(p, 3))
a,B,7,0 S
X (Z uy (py 8") s (P 5l)>

= Z F(;afﬁ,y X (]6—0—771)045 X (]5/ +m)75
a7ﬁ7775

= " (matrix product (# +m)T (#+m)T)

v

= tr((]/+m)l“(7}+m)f>

Y

(8)

and hence

{e7',.. [ Mle,...) = a@,sTu(p,s) = %Z|/\/l|2 = %tr((]zf/+m)T(]zf+m)f>.
) )

A similar trace formula exists for un-polarized scattering of positrons. In this case, the



amplitude is

<e+/,...}/\/l’e+,...> = o(p,s)Tv(p, s (10)

(note that v(p', s’) belongs to the outgoing positron while o(p, s) belongs to the incoming

st), and we need to average |M|? over s and sum over s’. Using

Y valp,s) x va(p,s) = (F—m)ap (11)

S

and working through algebra similar to eq. (8), we arrive at

(et Mt ..y = v(p,s)To(,s) = %Z|M|2 = %tr((ﬁ—m)l“(ﬂ'—m)f).

s,s’

(12)

Now suppose an electron with momentum p; and spin s; and a positron with momentum

p2 and spin sg come in and annihilate each other. In this case, the amplitude has form

(.. Mler.es,...) = v(p2, s2)Tu(py, s1) (13)

for some I', and if both electron and positron beams are un-polarized, we need to average the

|M|? over both spins s; and s3. Again, there is a trace formula for such averaging, namely

- _ 1 1 —
(... Mler,ed,...) = v(p2, s2)Tu(p1,s1) = Zg M2 = 1 tr((ﬂg—m)F(jfﬁLm) F).

(14)

Finally, for a process in which an electron-positron pair is created, the amplitude has

form
(er’ e3’, . [ M) = a(ph, s1)To(ph, s5), (15)

and if we do not detect the spins of the outgoing electron and positron but only their

momenta, then we should sum the |M|? over both spins s; and sy. Again, there is a trace



formula for this sum, namely

(er’ e3’, .. MI|..) = ap), s)To(phy, s5) = Z M2 = tr((ﬁ'l +m) T (y —m) f).
51,52

(16)

Processes involving 4 or more un-polarized fermions also have trace formulae for the spin

sums. For example, consider an e~ + e™ collision in which a muon pair u~ + p* is created.

There is one tree diagram for this process,

(17)
and it evaluates to
o=t -t —ig™ Y o sl (4 -
(| M et = = s ) enu(u) x e e, u(e)
(18)
. 9
ie _ _
= — xa( )y e(ph) x o(et)pule”)
where
s =q" = (m+p)’ = Wi+ph)? = B2, (19)

is the square of the total energy in the center-of-mass frame.

The amplitude (18) depends on the spins of all 4 particles involved. To get the partial
cross-section for an experiment using un-polarized beams of initial electrons and positrons
and a spin-blind muon detector, we need to average the |M|? over both initial spins s, s

and sum it over both final spins s/, s5, thus

do M]? 1
<d_Q) — (l)47rLs where |M|? = 1 Z M2 (20)

’ ool
51,82,51,5;



For the amplitude (18) at hand,

el

Mx M = S (™) vlt) x o u(en)) x (06 ) ) < ate ()
— note sums over two separate Lorentz indices v and A —
4

= S ()t < o)y u(ur) ) x (s maleT) x ate)no(et))

(21)
and consequently
64

MP = 5 [ D2 alum ) e(®) x o)y u(u) | x
X (Z @(6+)’7yu(6_) X U(G_)’}/A’U(e—’—)) (22)
e -
= @ X tl"((]/l + Mu) ’7” (p”Q — MM) ’7)\> X tr((ﬂg — me) Yy (%1 + me) 'y)\),

Calculating Dirac Traces

Thus far, we have learned how to express un-polarized cross-sections in terms of Dirac
traces (i.e., traces of products of the Dirac 4* matrices). In this section, we shall learn how

to calculate such traces.

Dirac traces do not depend on the specific form of the 79,4, ~2, 4% matrices but are

completely determined by the Clifford algebra

{7} = A 4+ A = 297 (23)

To see how this works, please recall the key property of the trace of any matrix product:
tr(AB) = tr(BA) for any two matrices A and B. This symmetry has two important corol-

laries:

e All commutators have zero traces, tr([A, B]) = 0 for any A and B.



e Traces of products of several matrices have cyclic symmetry

tr(ABC---YZ) = tr(BC---YZA) = tr(C---YZAB) = --- = t2(ZABC---Y).
(24)

Using these properties it is easy to show that
tr(v"") = 49" = tr(dl) = 4(ab) = 4a,b". (25)
Indeed,
r(117") = ("9 = (B = (™) = ¢ x () = ¢ x4, (26)
where the last equality follows from Dirac matrices being 4 x 4 and hence

tr(1) = 4. (27)

Next, all products of any odd numbers of the v matrices have zero traces,

tr(y") = 0, tr(y9") = 0, tr(y’ " 7) = 0, ete., (28)
and hence
tr(d) = 0, tr(dlf¢) = 0, tr(dl¢d¢) = 0, etc. (29)

To see how this works, we can use the v° matrix which anticommutes with all the 4* and
hence with any product I' of an odd number of the Dirac 4’s, 4°T' = —I'y°. Combining this

observation with 7°v° = 1, we have
I =T = Ty = —3[°T, ") (30)

and therefore

(@) = —u(’r./7) = o. (31)

Products of even numbers n = 2m of v matrices have non-trivial traces, and we may

calculate them recursively in n. We already know the traces for n = 0 and n = 2, so consider



a product vy y#4" of n = 4 matrices. Thanks to the cyclic symmetry of the trace,
KA AV AUV K\ 1k AV
tr(vvvv)—tr(vvvv)—tr(2{7,777}> (32)
where the anticommutator follows from the Clifford algebra (23) and the Leibnitz rule,

(Y = (Y — MY AR+ YA

(33)
= 29" x yFyY — 20" x MY 4 29" X
Consequently
tr(Y" ") = g™ X tr(afyY) — g™ xtr(vMY) + g™ x tr(yH)
34
_ 4gn)\g;w - 4gn,ug/\1/ + 4glﬂ/g)\,u ( )
and hence

tr(d ¢ d) = 4(ab)(cd) — 4(ac)(bd) + 4(ad)(bc). (35)

Note that in eq. (34) we have expressed the trace of a 4—y product to traces of 2—y products.

Similar recursive formulae exist for all even numbers of v matrices,

(") = e (3{y" 7))

for even n only

_Z kylykxtr(/y %/YV")

(36)

For example, for n = 6
tr(Y MY PY) = g™ x (Y P7) — g X (v PY) + g™ x (v HePA0)
— g X< tr(Y ) 4 g5 x ()
_ 4gm % <guygpa _ g 4 guagyp>
g x (g g g/\p vo g)\a l/p)
+ 4g™ x (gA“g — gMg" + gA"Q’“‘”)
<gAugw _ g)\ugua +yg g“”)

+ 4¢5° x (g)\ugyp o g/\y mp 4 g)\pg 1/>.
(37)

For products of more 7 matrices, the recursive formulae (36) for traces produce even



more terms (105 terms for n = 8, 945 terms for n = 10, elc., etc.), so it helps to reduce
n whenever possible. For example, if the matrix product inside the trace contains two ¢
matrices (for the same 4—vector a*) next to each other, you can simplify the product using

dd = a®, thus
el g ) = a®xte(f- g, (38)

Also, when a product contains v* and 7, with the same Lorentz index o which should be

summed over, we may simplify the trace using

Y% = 4, dva = =24, YA = +4(ab), VAV tva = —24¥d,  (39)

etc., cf. homework set#(, problem 1(a).

In the electroweak theory, one often needs to calculate traces of products containing the

7° matrix. If the 4° appears more than once, we may simplify the product using 7°7° = 1

and 7°y” = —y¥~°. For example,

tr(v“(l—’y5)%v”(1—’y5) q) = tr<7“(1—75)¢(1+75w q)
= (1 =) =77 #7" 4)
= 2t(7(1 = ") 7" o)

(40)
because (1 —~°)2 = 1 —29° ++77° = 2(1 —4°)
= 26((1+2")7" 7" o)
= 2tr(’v”my q’) + 2tr(v5v”my q’)-
When the 7° appears just one time, we may use 7> = i7%y!v293 to show that
r(7°) = 0, tr(y7") = 0, (y79"") =0, tr(x*yMHyY) =0 (41)
while
tr(YPy Y ) = —die™M. (42)
For more 7 matrices accompanying the v we have
tr(757”1 coey¥) = 0 Voddn, (43)
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while for even n = 6,8, ... there are recursive formulae based on the identity

Py = g x Py — gV X P b g P — Py, (44)

Muon Pair Production

As an example of trace technology, let us calculate the traces (22) for the muon pair

production. Let’s start with the trace due to summing over muons’ spins,

(0 + M)y 0 — Ma)r") = w0y ")
+ My x (P ) - Myx ) (45)
AV
— Mi X tr(y*y").

On the second line here, we have three v matrices inside each trace, so those traces vanish.

On the third line, tr(y*y”) = 4¢**. Finally, the trace on the first line follows from eq. (34),

@ ") = Prabhs X ("7 7)

= Phabhs x 4(g° x g7 = g7 x g™ 4 g x g¥) (46)

= dp} xply — 4(piph) x ¢N + 4pt x ph.

Altogether,

tr((ﬂ’ﬁMu)vW’z—Mu)v”) = 4pply + ApYps — AM? + (piph)) x g

(47)
= 4y + A — 25 x g
where on the last line I have used
s = (P +py)? = P + p5 + 200hph) = 2M] + 2(piph). (48)



Similarly, for the second trace (22) due to averaging over electron’s and positron’s spins,

we have

tl‘((ﬂz —me) Yo (P1 + me) %) = tr(gan i)
+ me X tr(Pavyn) — me X tr(ypim)
— mg X tr(n)
= dpoy X pix — 4(pap1) X gun + 4pax X 1y (49)
+me X0 — mex 0 — m2 X 4g,,
= dpopin + Apaapiy — 4((pap1) +m?) x gy,

= dpoyp1n + 4paap1y — 25 X gy,

where on the last line I have used

s = (p+p2)® = pt + p5 + 2(pap1) = 2mZ + 2(papr). (50)

It remains to multiply the two traces and sum over the Lorentz indices A and v:

tr<(¢/1 + MH)’VVWIQ - MH)7A> X tr<(¢2 —me) Y (P1 + me) %\) =

= (4;0’1”2?9 + APy — 25 x g”) X (4pzyp1y + dporpr, — 28 X gm)
N I IV

= 16(p1'ps + p1py) X (P2vP1x + P2APIY)
— 859" X (pawpin + Parp1v)
—8s gux % (0108 + pi'p5)
+45% x Mgy,
= 16 2 ((pp1) hro) + (Hhp)Bip2)
— 85 x 2(p1p2) — 8s x 2(phph) + 4s? x 4

= 32(plp1)(Php2) + 32(php1)(Pip2) + 165 x (M2 +m?)

(51)
where the last line follows from eqs. (48) and (50). Hence, in eq. (22) we have
3 _ 1 2 4et / / / / 2 2
MP =5 > IMP = 5 x (2(p1p1)(p2p2) + 2(php1) (hp2) + s(M], +me))- (52)
all spins

10



Finally, let’s work out the kinematics of pair production. In the center-of-mass frame,

pio = (E,£p) and pYy = (E, £p’), same £ = 3 Eem but p’ # p. Therefore,

(pip1) = (php2) = E* — p'-p,
(Pop1) = (Php2) = E* + p'-p.
s = 4F?,
2(p1p1) (Pap2) + 2(pap1)(Php2) = 2(E* —p'-p)* + 2(E*+p - p)?
= 4B8" + 400" p)’
= 4E* 4+ 4p” p® x cos? 0,

and consequently

12 2 M2+m2
M2 = ¢ (1 + pEp xcos? + L 2.

where p/? = E? — Mﬁ and p? = E%2 —m?.

(53)

(54)

We may simplify this expression a bit using the experimental fact that the muon is much

heavier than the electron, M, ~ 207m,, so we need ultra-relativistic e™ to produce pT,

E > M, > m,. This allows us to neglect the m? term in eq. (54) and let p? = E?, thus

M M
M2 = 64(<1 + E—g) + ( - E—g) ><C0529>,

and consequently the partial cross-section is

oy e ([ wy v
(d_Q)CHl:Zl_SX((l_'_ﬁ)—i_(_ﬁ XCOSG X 1_ﬁ

where the root comes from the phase-space factor |p’|/|p| for inelastic processes.

(55)

(56)

Looking at the angular dependence of this partial cross-section, we see that just above the

energy threshold, for E' = M), +small, the muons are produced isotropically in all directions.

11



On the other hand, for very high energies £/ > M, when all 4 particles are ultra-relativistic,

do
— 1 2.
<dQ)C,m, x 1+ cos”0 (57)

In the furrent homework set#1( (problem 2) you will see that the polarized cross sections

depend on the angle as (1 & cos#)? where the sign & depends on the helicities of initial
and final particles; for the un-polarized particles, we average / sum over helicities, and that

produces the averaged angular distribution 1 + cos?.

Finally, the total cross-section of muon pair production follows from eq. (56) using

4
/dQQ — 4, /dQQ cos2f = % (58)
hence
_ _ A o2 M? M?
o eTet » ) = =35 " <1+ﬁ> —E—g. (59)

At the threshold this cross-section is zero, but it rises very rapidly with energy and reaches
the maximum value at ' ~ 1.073 M,,; after that, it starts decreasing due to the overall 1/s

factor. Here is the plot:

O.tot

A

My,

The red line here shows the actual total cross-section while the dotted black line shows the

12
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approximation
o~ oy = (60)

for energies well above the threshold. This approximate formula rapidly approaches the

gto‘gall MH 4
Tagoyaal -1-0 (f) : (61)

so even for energy E just 50% above the threshold the approximation (60) overestimates the

actual cross-section (59),

actual cross-section by only 10%. Here is the plot of the o  /ot°® as a function of teh

electron energy:
Utot / UEc)ot

A
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