Fermionic Functional Integrals
Gaussian Integrals over Fermionic Variables

As a prelude to Functional Integrals over fermionic fields, let’s study Gaussian integrals
over finite numbers of fermionic variables, i.e., odd Grassmann numbers. For simplicity, let’s
assume ‘complex’ Grassmann numbers for which 6 and its conjugate 6 are independent, thus
60 # 0. Similar to the Hermitian conjugation of linear operators, the ‘bar’ conjugation of

Grassmann numbers reverses their order of multiplication, thus

In particular,

/dN9 :/d9N~-/d91 but /dNe‘ :/dﬁ_lm/déN. (2)

Theorem: for any N x N bosonic matrix A;;, let
N
0140 = 0;A;;0; = > 0;A;0;, (3)

then
/ Vg / aVo exp(—@TA@> = det(A). (4)

Before proving this theorem for general N, let’s see how it works for N =1 and N = 2. For

N =1, Ais just a number (real or complex), OTAO is simply §Af, and
exp(—H_AG) = 1 — AAH + nothing else,

hence

/dé /de exp(—GA0) = Ax /dé /d9<_ée — 00) = A (5)



Next, for N = 2

exp(—0T40) = 1 — (6f40) + L(6f46)°
where the highest component is
%(@TA@)Q = %AijAkg X Q_i@je_keg = —%AijAkg X Qjeg X e_ze_k

(7)

Moreover, since there are only two independent 6’s at play and they anticommute with each

other,

ejeg = Ejgeleg

where €, is the 2D Levi-Civita tensor, and likewise

0:0r = €102 = —ei020, .
Consequently,
highest 1 _
[exp(—@TA@)] = +§AijAM X €jp€f X 01690261
component

and therefore
/d2§/d29 exp(—@Ul@) = +%AijAkg X €j0€j); -

Finally, on the RHS here

1 1 1 1 1
+5AijAre X €jeeir, = 5A11A20 — 5A12A21 — 5A21A12 + 5A2An

= Aj1As — ApAs = det(A),

which verifies the theorem for N = 2.

(8)

(10)

(11)

(12)



In the same way, for N > 3, the highest component of exp(—@TA@) is

1 1 N (—l)N _ _ _
ﬁ(_@ A@) = N' AilleinQ "'AZ'N]'N X 9@19‘719@29‘72 "'eiNejN
_ =Y Ai i Aigiy -+ Ainin X (=DNWFD 29, 005 Gy, - - - 6;
= TN i1j1 4 iz ga iNJN 1 Jin i1 iN -
(13)
Furthermore, since there are only N 6’s at play
9]'1 s GjN = €j1,...jN X 91 s ‘9N (14)
where €;, j, is the N-dimensional Levi-Civita tensor, and likewise
éil i '@N = €y, iy X 010y = €iyoin X (—1)N(N*1)/2 On---01. (15)
Consequently,
i highest +1 _ _ _
[GXP(—@ A@)Lomponent =N Aiyji Aigga + Ainin X €y gnenjiv Einyizsei X iy =+ 0in O -+ - 01
(16)
and therefore
Ng [N t +1
a‘'o |d"'o exp(—@ A@) = ﬁAhleisz .. 'AiNjN X Ejl7‘7’27_‘_7‘7'1\,62'17,'27_‘_72']\, = det(A),
(17)

which proves the theorem (4).

Note: unlike the bosonic Gaussian integral

/sz* /sz exp(—zZ‘Aijzj> = % : (18)

the fermionic Gaussian integral (4) is directly rather than inversely proportional to the
determinant det(A). However, both types of Gaussian integrals can be easily generalized to
Gaussian+ integrals such as

N _* N * * (27T)N -1
/d z /d zexp(—ziAijzj) X zpzy = mx (A )kga (19)



* * * % (27T)N
/sz /sz eXp(—Zi Aijzj) X Zp2pZm A = dct (A X (20)

X ((A_l)km(A_l)en + (A_l)kn(A_l)Zm>’

~—

etc., for the bosonic variables — as we saw last lecture, — and similarly
/dN0 /dNe exp(—@TA@) x 040 = det(A) x (A7), (21)
/dNe‘ /dN 0 exp(—@T A@) % 0000y = det(A) x (22)

(A (A7) e+ (A7) (A7),

etc., for the fermionic variables. Indeed,

/dNe/dNe exp(—@TA@) % 0,0,

_ 9 [ong [ _of
= i /d 0/d eexp( @A@) (23)

— 8%4% det(A) = det(A) x (A7),
likewise
/ aVo /dN 0 exp<—@TA@) X 00000y,
- _ajng ajmk / dNe/ 0 exp <_@TA@) (24)
- anw%mk det(A) = — ajng (det(A) x (A_l)km)

= det(A) x (—(A‘l)km(A_l)gnJr (A_l)kn(A_l)em)’

and similarly for more (6, ) pairs outside the exponential.



Functional Integrals for Free Fermionic Fields

A ‘classical’ Dirac field ¥, (z) is odd—Grassmann-—number valued. That is, for each
spacetime point x and each Dirac component « there is an independent complex Grassmann
variable W, (z) and its conjugate \If&(:c), and all such variables anticommute with each other.

The Dirac action

S[W(z), ¥(x)] = /d4:c V(i@ —m)¥ (25)

is bi-linear in ¥ and ¥, so the Functional integral over these fields

/ / D[¥(x)] exp(iS[¥, ¥]) = Det(d + im) (26)

simply generalizes the Gaussian fermionic integrals from the previous section to the infinite-
dimensional family of independent fermionic variables. Likewise, the correlation functions
of the fermionic fields obtain from the generalization of the Gaussian+ integrals (21), (22),

etc.:

- ﬂr \I;WD exp(lS (W \I/]) X \Il(y)@(x)
(QITU(y)¥(2) Q) = [IP@|D[¥] exp (iS[T, ¥))

(27)
U d4p 1p(x— i
- Gl ) = [
(Dirac indices suppressed), likewise
_ B D@D [¥] exp(iS[W, ¥]) x (w)¥(2)V(y)¥(z)
(O T ()W ()T ()T () |2) = TOON e (ST 9]

_ i w (28)

ol g ) 0l g o

+ <x|ml_m|w>x<y|ia_m|z>.

etc., etc.

For closer similarity with functional integrals over the bosonic fields, let’s analytically

continue the Dirac fields to the Euclidean spacetime and introduce the sources. In Euclidean



spacetime, all 4 Dirac matrices 7% are Hermitian, specifically

b=l dp o= iy, = Do) = 20 (20)

and also

(=100)m + (=i%m) -V = —ifu. (30)

EO

dg = v

Consequently;,

ZSM = i/d4xME(i&M—m)\Il :/d4SL’EE(—@E—m)\I’ = —/d4$L’E£E (31)

for

Lp = V(@ +m)V. (32)

As to the sources, since ¥, (r) and ¥, (z) are independent fermionic fields, we have indepen-
dent sources for both of them, n,(x) and 7, (x). Altogether, the Euclidean action including

the source terms is

the partition function is

Zin7) = / D] / D] exp(—Sp[¥, T 1. 7)), (34)

and its logarithm (or rather —log(Z)) is the generation functional of the connected correla-
tion functions,

_ 0%log Z[n, 1]

G (1Y) = W,

etc. (35)

For the free fermions, this generation functional — or rather its dependence on n and 7

sources — can be completed exactly by completing the action (33) to a full square: For any



given n(z) and 7(z), let
V() = W) + @+m) @), T(@) = U) + q@)@+m)t (36)

then
Sp = /d%E (T@+mw — 7w — Ty) = /d% (T@+m) — 5@+m)~"n) (37)

and consequently

Zin7 = / D) / DI exp( =S¥, T:n. 7)

- / DIV / D[] exp <— /d%E ﬁ’(@m)\v’) X exp (+ /d“:ceﬁ(ﬁ + m)‘ln)

= exp <+ /d4:ceﬁ(é9 + m)ln) x Z[0,0].
(38)

Or in terms of the generating functional of the connected correlators,

—log Z[n,n] = —logZy — /d4xeﬁ(@+m)_1?7 (exactly). (39)

Thus, the free Dirac fields have only one connected correlation function, namely the free

propagator
) ) d4pE ; 1
G (x,y) = —— —logZ) = + +m)~ !z :/ PG N
(40)
Note: in the Euclidean spacetime, the Dirac propagator is
1 1
ibptm  hu—m (4D

where the overall factor of ¢ between Euclidean and Minkowski propagators is common to all

field types, scalars, vectors, spinors, etc., etc. As to the denominator here, due to different



~vp matrices in Euclidean and Minkowski spaces, we have

Ve = v5pE + Ap-0 = @°) + (i) -0 = iv'p = i¥u (42)

and therefore

() = (Gm) = @

Fermionic Functional Integrals in QED

In the simplest version of Quantum ElectroDynamics — EM and electron fields, and

nothing else — the Euclidean Lagrangian is

Lp = +3F, + U@ +m)¥ (44)

where D,, = 0, —ieA,, is the covariant derivative, the Euclidean action including the source

terms is
Sp = /d%E (c — J,A, — Ty — ﬁ\I'), (45)

and the partition action is

Z[J .7 = /D[AH] exp (— /d4a:E<iF3V = JHAH>) x
X /D@] /D[\IJ] exp (— /d4xE(§(lp+m)\If — T - @7)) .

(46)

The functional integral over the EM fields A, () has its own issues, and I address it in a

keparate set of noted. For the moment, let’s focus on the fermionic functional integral in a

background of given EM fields A#(x). Thus, we identify the integral on the second line of


http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/fqem.pdf

eq. (46) as a fermionic partition function

Z1Aun, 1 = /D[@] /D[\If] exp <— /d‘*a;E(@(@ +m)U — 0 — @z)) .

The integral here is Gaussian, so it formally evaluates to

ZA,,n,7 = Det(d 4+ m) X exp (/d%e—]ﬁ ) (48)

or in terms of the generating functional — log 7 ,

— 1
—log Z[A,,m, 7] = —logdet(® + m) —/d4xeﬁ 7. (49)

D+m

Physically, the red term generates one loop diagrams where a bunch of external photons are

connected to an electron loop

(50)

while the blue term generates tree diagrams where photons are connected to an open electron

line

.......

(51)

a <
<« 4 4 4 L 4 <

To see how this works, let’s start with the functional determinant Det([D 4+ m). To



evaluate this determinant, we note that

1
P +m

Dm =p—ichtm = @rm)x |1 - 5 (ied) (52)

and therefore

Det(® +m) = Det(? + m) x Det x ll - (e A)] (53)

g+m

where the first factor is badly divergent but it does not depend on the background EM field
A, (z). Therefore, we may treat it as an overall constant factor of the partition function.
But the second factor in eq. (53) does depend on the EM background, so when we eventually
integrate over EM fields A, (x), this factor will appear in the context of

/ DIA,] exp(—Sp[A]) {1 -5 ! (ieﬂ)} | (54)

+m

which we may interpret as

[P exp(=sia) =~ - Aspl4) (55)

where
ASglA,l = —logD 1 ! ) 56
) = —logDet |1+ 2-(ic ) (50

acts as an extra bit of effective action for the EM field due to electrons living in the EM
background. In terms of Feynman rules, —ASg[A,,] generates effective vertices for the photon

fields. Physically, such effective vertices stem from the electron loops. Indeed,

—ASE[A,] = logDet {1 ~7 !

+m
- —g;%Tﬁ(ainﬁwﬁon] B (57)

oo
= Z n-photon amputated diagram

n=1

fed)| = Trlog |1~ 5=

+m

e

Note that each such diagram carries overall — sign due to one fermion loop and a combina-

torial factor 1/n due to cyclic symmetry of the diagram. Also, in the context of —ASEg, each

10



n-photon diagram should be multiplied by the appropriate A, (x) factors for each external

leg, hence in the coordinate space

(teA(zn)) x Gy(zn; Tp-1) X
(Z'eA(l’nfl)) X Gw(xn71§xnf2) X
n-photon loop = — [d*x; -~-/d4a:n tr

x(ief(wg)) x Gy (r2;71) X (58)
(te A1) X Gy(21;2n)

= _71 X (functional trace) Tr {((Zim(zeﬁ))n} )

exactly as in eq. (57).

Thus we see that the red term in the fermionic free energy

~ 1
—log Z[A,,m,n] = —logdet() +m) —/d4x€ﬁ n. (49)

D+m

indeed generates electron loops acting as effective vertices for the photon lines attached to
them. As to the blue term involving the fermionic sources 7 and 7, it generates tree diagrams

where a bunch of photonic lines are connected to a single open electron line. To see that, we

expand
1 B 1
D+m  (@+m)—(ie A)
B 1 1 , 1
P +m * é?—l—m(wé{)&ij
71 € 71 1€ 71 (59)
* @er( A)ﬁer( A)@+m
71 € 71 1€ ! € !
b G i) g e ) G lie ) o —
+ .

11



Consequently;,

A
/d“xe—# = 7] <€ <7 + 7)< ¢ < 1)
D+m
A A
(60)

+ 1 < ¢ ¢ <7

A A A
+ N <€ ¢ ¢ ¢ <7
+

Altogether, the fermionic functional integral

2l 7] = /D@] /D[\If] exp <- /d‘la;E(me)w . %)) o (61)

takes care of all the electron lines — open or closed — in QED Feynman rules. However, at
this point, all photonic lines are treated as external. To get the photon propagators — and

hence diagrams like

L

12



we need to integrate over the A, (z) fields as well as the fermions. Such functional integrals

over the gauge fields pose their own problems due to gauge symmetry and its fixing. These

issues are discussed in detail in fhe next set of my noted.

13
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