
HIGGS MECHANISM

When a local rather than global symmetry is spontaneously broken, we do not get a massless

Goldstone boson. Instead, the gauge field of the broken symmetry becomes massive, and

the would-be Goldstone scalar becomes the longitudinal mode of the massive vector. This is

the Higgs mechanism, and it works for both abelian and non-abelian local symmetries. In

the non-abelian case, for each spontaneously broken generator T a of the local symmetry the

corresponding gauge field Aa
µ(x) becomes massive.

The Abelian Semiclassical Example

To understand how the Higgs mechanism works, let’s start with a semiclassical example of

a local U(1) phase symmetry. The complete model comprises a complex scalar field Φ(x) of

electric charge q coupled to the EM field Aµ(x); the Lagrangian is

L = −1
4FµνF

µν + DµΦ
∗DµΦ − V (Φ∗Φ) (1)

where

DµΦ(x) = ∂µΦ(x) + iqAµ(x)Φ(x), DµΦ
∗(x) = ∂µΦ

∗(x) − iqAµ(x)Φ
∗(x), (2)

and

V (Φ∗Φ) =
λ

2
(Φ∗Φ)2 + m2(Φ∗Φ). (3)

Suppose λ > 0 but m2 < 0, so that Φ = 0 is a local maximum of the scalar potential, while

the minima form a degenerate circle

Φ =
v√
2
× eiθ, v =

√
−2m2

λ
, any real θ. (4)

Consequently, the scalar field Φ develops a non-zero vacuum expectation value 〈Φ〉 6= 0, which

spontaneously breaks the U(1) symmetry of the theory. Were that U(1) symmetry global rather

than local, is spontaneous breakdown would lead to a massless Goldstone scalar stemming from

the phase of the complex field Φ(x). But for the local U(1) symmetry, the phase of Φ(x) —

not just the phase of the vacuum expectation value 〈Φ〉 but the x-dependent phase of the

dynamical Φ(x) field — can be eliminated by a gauge transform, so the physical consequences

of the SSB are more complicated.
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To see how this works, let’s use polar coordinates in the scalar field space, thus

Φ(x) =
1√
2
φr(x)× eiΘ(x), real φr(x) > 0, real Θ(x). (5)

This field redefinition is singular when Φ(x) = 0, so we should never use it for theories with

〈Φ〉 = 0, but it’s OK for spontaneously broken theories where we expect Φ(x) 6= 0 almost

everywhere. In terms of the real fields φr(x) and Θ(x), the scalar potential depends only on

the radial field φr,

V (Φ) =
λ

8

(
φ2r − v2

)2
+ const, (6)

or in terms of the radial field shifted by its VEV, φr(x) = v + σ(x),

φ2r − v2 = (v + σ)2 − v2 = 2vσ + σ2, (7)

V =
λ

8

(
2vσ + σ2

)2
=

λv2

2
× σ2 +

λv

2
× σ3 +

λ

8
× σ4. (8)

At the same time, the covariant derivative DµΦ becomes

DµΦ =
1√
2

(
∂µ
(
φre

iΘ
)
+ iqAµ × φre

iΘ
)

=
eiΘ√
2

(
∂µφr + φr × i∂µΘ + φr × iqAµ

)
. (9)

Inside the big () on the RHS, the first term is real while the other two terms are imaginary,

hence

|DµΦ|2 =
1

2

∣∣∣∂µφr + φr × i∂µΘ + φr × iqAµ

∣∣∣
2

= 1
2(∂µφr)

2 +
φ2r
2

×
(
∂µΘ+ qAµ

)2

= 1
2(∂µσ)

2 +
(v + σ)2

2
×
(
∂µΘ+ qAµ

)2
.

(10)

Altogether,

L = 1
2(∂µσ)

2 − V (σ) − 1
4FµνF

µν +
(v + σ)2

2
×
(
∂µΘ+ qAµ

)2
. (11)

To understand the physical content of this Lagrangian, let’s expand it in powers of the
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fields (and their derivatives) and focus on the quadratic part describing the free particles,

Lfree = 1
2(∂µσ)

2 − λv2

2
× σ2 − 1

4FµνF
µν +

v2

2
×
(
qAµ + ∂µΘ)2. (12)

The first two terms here obviously describe a real scalar particle of positive mass2 = λv2. The

other two terms — involving the Aµ(x) and the Θ(x) fields — seem to describe a photon and

a scalar field, but in fact describe a massive vector field and no scalars!

To see how this works, note the local U(1) symmetry of the theory, which acts as

A′
µ(x) = Aµ(x) − ∂Λ(x),

Φ′(x) = Φ(x)× exp(iqΛ(x)),

σ′(x) = σ(x),

Θ′(x) = Θ(x) + qΛ(x),

(13)

for an arbitrary x-dependent Λ(x). Physically, such a local symmetry means that one of the 6

field variables at each x — the real and the imaginary parts of the Φ(x), and the 4 components

of the Aµ(x) — is redundant, and we may reduce this redundancy by imposing a gauge-fixing

condition such as the Coulomb gauge∇·A(x) ≡ 0 or the Landau gauge ∂µA
µ(x) ≡ 0. When we

have a charged scalar field with a non-zero VEV, we may also impose a gauge-fixing condition

on that scalar field (instead of the vector field Aµ(x)), thus the unitary gauge

Θ(x) = phase
(
Φ(x)

)
≡ 0. (14)

The unitary gauge is badly singular when the complex field Φ(x) fluctuates around zero, so

it should never be used for the gauge symmetries which are NOT spontaneously broken. But

when the symmetry IS spontaneously broken by 〈Φ〉 6= 0 and the points where Φ(x) vanishes

are few and far between (if they exist at all), the phase Θ(x) is well-defined almost everywhere,

and it is easy to gauge it away by setting Λ(x) = (−1/q)Θ(x) =⇒ Θ′(x) = 0.

In the unitary gauge, the last two terms in the free Lagrangian (12) become simply

Lmassive
vector = −1

4FµνF
µν +

q2v2

2
× AµA

µ, (15)

the Lagrangian of a massive vector field of mass mv = qv. The scalar Θ(x) is gone from

this Lagrangian — it was eliminated by the unitary gauge fixing. For the same reason, the
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Lagrangian (11) is NOT gauge invariant — we used up the gauge symmetry of the original

theory for eliminating the Θ(x) field, and now the remaining Aµ(x) field does not have any

gauge symmetry anymore.

Without the unitary gauge — or any other gauge-fixing condition — we may describe

exactly the same massive vector particles using redundant fields Aµ(x) and Θ(x) subject to

gauge symmetry

A′
µ(x) = Aµ(x) − ∂µΛ(x), Θ′(x) = Θ(x) + qΛ(x), (16)

and a gauge-invariant free Lagrangian

Lmassive
vector = −1

4FµνF
µν +

(qv)2

2
×
(
Aµ + q−1∂µΘ

)2
. (17)

But the Θ(x) field here is not physical, it does not give rise to any scalar particles, and its

plane waves are mere gauge artefacts. The only physical particles in this system are the massive

vector particles, the same as in the Θ-less unitary-gauge Lagrangian (15).

Altogether, the complete particle spectrum of the theory of Φ(x) and Aµ(x) fields with a

spontaneously-broken local U(1) symmetry comprises a massive real scalar σ(x) and a massive

vector. But there is NO massless Goldstone scalar!

To see what happened to the would-be Goldstone boson, let’s count the degrees of freedom

of the complete theory. The complex scalar field Φ(x) carries 2 degrees of freedom, while the

vector field Aµ(x) subject to gauge symmetry carries another 2 DoF, for the total of 4 DoF.

This means that for every momentum 3-vector k, there should be 4 distinct 1-particle states

|k, ??〉 belonging to different particle species or different spin/polarization states. This counting

should work for both spontaneously-broken or unbroken U(1) symmetry, although the specific

1-particle states turn out to be quite different for the two regimes:

• The unbroken U(1) regime for m2 > 0 and 〈Φ〉 = 0:

In this regime, the Aµ(x) fields describe a massless photon, which has 2 helicity states,

λ = ±1 (but not λ = 0). At the same time, the complex scalar field Φ(x) with an

unbroken U(1) symmetry describes 2 scalar particle species with opposite electric charges

±q, the particle and the antiparticle. Altogether, for each k there are 4 1-particle states:
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the scalar particle
∣∣S+

〉
, the antiparticle

∣∣S−
〉
, and two photon states |γ(λ =)〉 and

|γ(λ = −1)〉.

• The spontaneously-broken U(1) regime for m2 < 0 and 〈Φ〉 6= 0:

In this regime, there is only one scalar particle species σ, but the massive photon has 3

spin states, λ = −1, 0,+1. Again, altogether there are 4 1-particle states: the |σ〉, and
the |γ(λ = +1)〉, |γ(λ = 0)〉, |γ(λ = −1)〉.

⋆ But these are rather different 4 states from the unbroken U(1) regime!

Now we can see what happens in the spontaneously-broken regime to the would-be Gold-

stone boson Θ(x): It became the longitudinal λ = 0 polarization of the massive vector field!

Indeed, the unbroken-symmetry regime has a massless vector without the λ = 0 mode. Once

the symmetry is spontaneously broken and the vector becomes massive, it has to have all 3

spin states, including the λ = 0 longitudinal mode. That mode has to come from somewhere,

so the Higgs mechanism ‘eats up’ the would-be Goldstone scalar Θ(x) and turns it into the

longitudinal polarization of the massive vector!

A rigorous way to see how this works would be to start with the redundant gauge-invariant

description (16) or a massive vector field, fix the Coulomb gauge∇·A = 0 instead of the unitary

gauge, expand the Lagrangian (17) into Fourier and helicity modes, eliminate the modes of

the A0 field, quantize the theory canonically, and in the process see how the Θ̂k and the Π̂Θ
k

operators combine into the creation and annihilation operators for the longitudinally polarized

vector particles. But this is a lot of work, and I am not going to do it here. Instead, I let the

unitary gauge speak for the outcome of the Higgs mechanism, even if it hides the gory details

of the ‘eating up the Goldstone boson’.

To complete this section, let me write down the complete Lagrangian of the spontaneously-

broken theory in the unitary gauge, including all the interactions of the σ(x) fields with itself

and with the massive vector field:

L = 1
2(∂µσ)

2 − λv2

2
× σ2 − 1

4FµνF
µν +

q2v2

2
×AµA

µ

− λv

2
× σ3 − λ

8
× σ4 + qv2 × σ AµA

µ +
q2

2
× σ2AµA

µ.

(18)
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Massive Photon Propagator

Let’s turn from the semiclassical field theory to the perturbative QFT and Feynman rules.

In particular, let’s derive the Feynman propagator for the massive photon.

In the unitary gauge, the massive photon is simply an ordinary massive vector particle

with free Lagrangian (15), so the photon’s propagator is

=
−i

k2 −m2 + i0

(
gµν − kµkν

m2

)
for m = qv. (19)

In the large momentum limit, this propagator behaves as O(1/m2) instead of O(1/k2), which

makes for much worse UV divergence of many loop diagrams. Clearly, this is bad for renormal-

izability of QFTs involving the massive photon, but the trouble is not inherent in the Higgs

mechanism but rather stems from the unitary gauge.

So let’s use a different gauge-fixing scheme, say the Landau gauge or the Feynman gauge,

thus

Lphys + Lgauge
fixing = −1

4FµνF
µν − 1

2ξ
(∂µA

µ)2 + LΦ (20)

where LΦ is the scalar field’s physical Lagrangian. Here we also avoid the polar coordinates

for Φ and instead use the Cartesian coordinates for the shifted fields, thus

Φ(x) =
1√
2

(
v + σ(x) + iπ(x)

)
. (21)

Consequently, in terms of the σ and π fields, we get

LΦ = 1
2(∂µσ)

2 − λv2

2
σ2 + 1

2(∂µπ)
2

− λv

2
(σ3 + σπ2) − λ

8
(σ2 + π2)2

+ qAµ
(
(v + σ)∂µπ − π∂µσ

)
+

q2

2
AµA

µ
(
(v + σ)2 + π2

)
.

(22)

Let’s treat all terms on the second and third lines here as perturbations, including the quadratic

Aµ∂µπ and AµAµ terms. Consequently, the Feynman rules contain valence = 2 vertices for the
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photon mass term and the photon mixing with the would-be Goldstone boson π,

µ ν
= im2gµν ,

µ πk

= mkµ, (23)

while the undressed photon propagator remains massless,

=
−i

k2 + i0

(
gµν + (ξ − 1)

kµkν

k2 + i0

)
. (24)

However, the valence = 2 vertices (23) allow for dressing the photon propagator already at the

tree level. Indeed, redefining the two-photon function Σµν(k) as being 1PI with respect to the

photonic lines only (rather than all internal lines), we get

tree = +

(25)

thus

iΣµν
tree(k) = (mkµ)

i

k2 + i0
(−mkν) + im2gµν =

im2

k2 + i0
×
(
k2gµν − kµkν

)
. (26)

Note: despite the spontaneous break down of the U(1) symmetry, this two-photon function

has form

Σµν(k) = (k2gµν − kµkν)×Π(k2) (27)

required by the Ward identities of QED for

Πtree(k
2) =

m2

k2 + i0
(28)

the only unusual feature of this propagator correction being a pole at k2 = 0. It is this pole in

Π(k2) which shifts the pole of the dressed photon propagator from k2 = 0 to k2 = m2. Indeed,
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in terms of Π(k2), the dressed photon propagator is

=
1

1− Π(k2)
× −i

k2 + i0

(
gµν + (ξ̄ − 1)

kµkν

k2 + i0

)
(29)

where

1

1− Πtree(k2)
× −i

k2 + i0
=

−i

k2 − m2 + i0
. (30)

If we include the loop corrections to the Πnet(k
2) besides the tree-level (28), we generally get

Π(k2) =
m2

k2
+ ∆Π(k2) (31)

where ∆Π is finite for k2 → 0, hence

1

1−Πnet(k2)
× −i

k2 + i0
=

−i

k2(1−∆Π) − m2 + i0
=

−iZ

k2 − m2
phys + i0

(32)

and therefore

=
−iZ

k2 − m2
phys + i0

(
gµν + (ξ̄ − 1)

kµkν

k2 + i0

)
. (33)

Non-Perturbative Symmetry Breaking

A semiclassical or perturbative theory of a single charged field with a symmetry breaking

potential is a good example of the Higgs mechanism, but the mechanism works just as well

in more general situations and is not limited to perturbative theories. Indeed, take any QFT

— perturbative or not perturbative — as long as it’s weakly coupled to the EM fields. The

physical Lagrangian of such a theory can be described as

L = L0 − 1
4FµνF

µν − eAµ × Jµ + e2AµA
µ ×X (34)

where L0 governs all the fields besides EM and eJµ — or rather

Jµ
EM = eJµ − 2e2AµX (35)

— is the electric current of those fields. For consistency of Maxwell equations, the La-

grangian (34) must have a local U(1) symmetry accompanying by the gauge symmetry of

the Aµ fields. In particular, the L0 Lagrangian of non-EM fields must have a global U(1)

symmetry whose conserved current is Jµ.
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Now suppose the global U(1) symmetry of the L0 is spontaneously broken. In the absence

of EM fields and couplings, the theory would have a massless Goldstone boson π, and the

symmetry current Ĵµ would create such bosons from the vacuum,

Ĵµ(x) |vacuum〉 ∝ |π@x〉 , (36)

or in terms of the Goldstone field π(x),

Jµ(x) = v∂µπ(x) + · · · (37)

for some coefficient v. Semiclassically, v is the VEV of the symmetry breaking field, but in a

quantum theory the relation is more complicated. The relation (37) between the current Jµ

and the Goldstone bosons gives the correlation function of two currents a pole at k2 = 0 due

to Goldstone boson propagator,

〈vac|TĴµ(p)Ĵν(−p) |vac〉 = v2 〈vac|T∂µπ̂(p) ∂ν π̂(−p) |vac〉 + · · · = v2
ipµpν

p2 + i0
+ finite.

(38)

When we re-couple the theory with the spontaneously broken U(1) to the EM fields, the

Aµ fields couple to eJµ, although there is also a two-photon coupling to some operator X .

Consequently, the two-photon correlation function obtains as

Σµν(k) = ie2 〈vac|TĴµ(k)Ĵν(−k) |vac〉+ 2e2gµν 〈vac| X̂ |vac〉

= −e2v2
kµkν

k2 + i0
+ 2e2 〈X〉 gµν + · · · .

(39)

By the Ward Identity of the conserved EM current (35), we must have

〈X〉 def
= 〈vac| X̂ |vac〉 = 1

2v
2 (40)

so that

Σµν(k) =

(
gµν − kµkν

k2 + i0

)
×
(
e2v2 + O(k2)

)
=
(
gµνk2 − kµkν

)
×Π(k2) (41)

for Π(k2) =
e2v2

k2
+ finite. (42)

The 1/k2 pole in Π(k2) shifts the pole in the photon propagator from k2 = 0 to k2 = e2v2,
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exactly as in single-charged-field example we saw above,

=
−i

k2 − e2v2 + i0

(
gµν + (ξ̄ − 1)

kµkν

k2 + i0

)
. (43)

Thus, just as in the single-charged-field example, the Higgs mechanism ‘eats’ the would-be

massless Goldstone boson π and makes the photon massive. Specifically, the photon’s mass is

m = ev where v is the coefficient is the strength with which the symmetry current Jµ creates

the Goldstone bosons from the vacuum, cf. (44). (37).

Non-Abelian Higgs Mechanism

When a non-abelian local symmetry is spontaneously broken, the Higgs mechanism works

similarly to the abelian case: red For each generator T a of the broken symmetry, the would-be

Goldstone boson πa and the gauge field Aa
µ are combined into a massive vector field. For

simplicity, I shall work at the semiclassical level, so the symmetry is broken by the VEVs of

some scalar field. Also, I shall focus on the mass spectrum of the theory rather than Feynman

propagators, so I shall work in the unitary gauge. In the non-abelian case, the unitary gauge

is particularly useful specific members of symmetry multiplets with specific physical particles.

Example: SU(2) with a Higgs Doublet

To illustrate the non-abelian Higgs mechanism, consider the example of SU(2) gauge theory

coupled to a doublet of complex scalar fields Φi(x). In terms of canonically normalized fields,

the Lagrangian is

L = −1
4F

a
µνF

aµν + DµΦ
∗
iD

µΦi − λ

2

(
Φ∗
iΦ

i − v2

2

)2

, (45)

where

DµΦ
i = ∂µΦ

i + i
2gA

a
µ

(
σa
)i
j
Φj ,

DµΦ
∗
i = ∂µΦ

∗
i − i

2gA
a
µΦ

∗
j

(
σa
)j
i
,

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gǫabcAb

µA
c
ν .

(46)

For v2 > 0 the scalar potential has a local maximum at Φi = 0 while the minima form a

spherical shell Φ∗
iΦ

i = (v2/2) in the C2 = R4 field space; all such minima are related by the
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SU(2) symmetries to

〈Φ〉 =
v√
2
×
(
0

1

)
. (47)

Note that this vacuum expectation value spontaneously breaks the SU(2) symmetry down to

nothing — there is no subgroup of SU(2) which leaves this VEV invariant. Consequently, we

expect all 3 vector fields Aa
µ(x) to become massive.

In the process, 3 would-be Goldstone scalars should be eaten by the Higgs mechanism.

Since the theory has 2 complex — or equivalently 4 real — scalars, only one real scalar should

survive un-eaten. Ironically, it is this un-eaten scalar σ(x) which is called the physical Higgs

field.

To see how this works, let’s fix the unitary gauge. Any complex doublet Φi(x) can be

rotated by some SU(2) symmetry U(x) so that the upper component of the rotated Φ′ = UΦ

is zero, Φ′1 = 0, while the lower component Φ′2 is real and positive. Thus, in the unitary gauge

we require

ReΦ1(x) ≡ ImΦ1(x) ≡ ImΦ2(x) ≡ 0,

hence Φ(x) =
1√
2

(
0

φr(x)

)
for a real φr(x) > 0.

(48)

This gauge-fixing condition is terribly singular for φr → 0, so it should never be used for

the unbroken-symmetry regime of the theory. But for the spontaneously broken theory where

φr(x) fluctuates around the minimum at φr = v > 0, the unitary gauge is OK.

In the unitary gauge, the only scalar field is the φr(x), or equivalently the shifted field

σ(x) = φr(x)− v; all the other scalar fields are frozen by the gauge-fixing conditions (48). In

terms of physical Higgs field σ(x), the scalar potential becomes

V =
λ

2

(
Φ†Φ − v2

2

)2

=
λ

8

(
2vσ + σ2

)2
=

λv2

2
× σ2 +

λv

2
× σ3 +

λ

8
× σ4 (49)

where the first term on the RHS is the mass term, mass2 = λv2, while the remaining terms are
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self-interactions. More interestingly, the covariant derivative of the Higgs doublet Φ becomes

DµΦ =
1√
2




(
0

∂µσ

)
+

ig

2
A3
µ ×

(
+1 0

0 −1

)(
0

v + σ

)

+
ig

2
A1
µ ×

(
0 1

1 0

)(
0

v + σ

)
+

ig

2
A2
µ ×

(
0 −i

i 0

)(
0

v + σ

)




=
1√
2

(
i
2g
(
A1
µ − iA2

µ

)
× (v + σ)

∂µσ − i
2g A

3
µ × (v + σ)

)
,

(50)

hence

DµΦ
† DµΦ = 1

2

∣∣ i
2g
(
A1
µ − iA2

µ

)
× (v + σ)

∣∣2 + 1
2

∣∣∂µσ − i
2g A

3
µ × (v + σ)

∣∣2

=
g2(v + σ)2

8
×
((

A1
µ

)2
+
(
A2
µ

)2)
+

g2(v + σ)2

8
×
(
A3
µ

)2
+ 1

2(∂µσ)
2.

(51)

The last term here is the kinetic term for the Higgs scalar σ(x), while the rest of the bottom

line are mass terms for the vector fields and the interaction terms between the vectors and

the σ. Curiously, we get the same mass and similar interactions for all 3 vector fields Aa
µ:

L ⊃ g2(v + σ)2

8
Aa
µA

aµ =
M2

2
× Aa

µA
aµ +

g2v

4
× σAa

µA
aµ +

g2

8
× σ2Aa

µA
aµ (52)

where

M2 =
g2v2

4
. (53)

Example: SU(2) with a Higgs Triplet

Now consider an example of a partially broken gauge symmetry, an SU(2) Higgsed down

to a U(1) subgroup, or equivalently SO(3) → SO(2). This time, the scalar fields Φa(x) are

real and form a triplet of the SU(2) rather than a doublet. Thus,

L = −1
4F

a
µνF

aµν + 1
2DµΦ

aDµΦa − λ

8

(
ΦaΦa − v2

)2
, (54)

where

DµΦ
a = ∂µΦ

a − gǫabcAb
µΦ

c , F a
µν = ∂µA

a
ν − ∂νA

a
µ − gǫabcAb

µA
c
ν . (55)

Again, for v2 > 0 the scalar potential V (Φ) has a degenerate family of minima which form a
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spherical shell ΦaΦa = v2 in the scalar field space R3, and all such minima are equivalent by

SU(2) ∼= SO(3) symmetries to

〈Φ〉 =




0

0

v


 . (56)

This time, this vacuum expectation value is invariant under an SO(2) subgroup of the SO(3),

— or equivalently under an U(1) subgroup of the SU(2). Specifically, it’s the SO(2) ∼= U(1)

generated by the T 3, the third component of the isospin T. Consequently, out of the 3 vector

fields Aa
µ, we expect the A3

µ to remain massless while the other 2 fields A1,2
µ should become

massive.

In the process, the Higgs mechanism should eat 2 real scalar fields. Since we only have

3 real scalars to begin with, only one scalar should survive un-eaten — the Physical Higgs

field σ(x).

To see how this works, we fix the unitary gauge

Φ1(x) ≡ Φ2(x) ≡ 0, Φ3(x) > 0. (57)

As usual, this gauge is badly singular at Φ = 0, but it’s OK for the Φ(x) ≈ 〈Φ〉 6= 0. Shifting

the Φ3(x) by the VEV, we get Φ3(x) = v + σ(x), where σ(x) is the physical Higgs scalar —

and also the only scalar remaining in the theory in the unitary gauge.

In terms of the σ(x), the scalar potential becomes

V (σ) =
λ

8

(
2vσ + σ2

)2
=

λv2

2
× σ2 +

λv

2
× σ3 +

λ

8
× σ4, (58)

where the first terms on the RHS gives the Higgs scalar mass2 = λv2. More interestingly, the
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covariant derivative of the scalar triple Φa(x) becomes

DµΦ
a =




0

0

∂µσ


 − g




A1
µ

A2
µ

A3
µ


×




0

0

v + σ




〈〈where × is the cross product of two isovectors 〉〉

=




−gA2
µ(v + σ)

+gA1
µ(v + σ)

∂µσ


 ,

(59)

hence the covariant kinetic terms for the scalars become

1
2DµΦ

aDµΦa = 1
2(∂µσ)

2 +
g2(v + σ)2

2
×
((

A1
µ

)2
+
(
A2
µ

)2)
. (60)

As usual, the first term here is the kinetic term for the physical Higgs scalar σ, while the second

term contains the mass terms for the vector fields,

L ⊃ M2

2
×
((

A1
µ

)2
+
(
A2
µ

)2)
, M2 = g2v2, (61)

but only for the A1
µ and the A2

µ — the third vector A3
µ(x) remains massless.

The massless vector A3
µ(x) is the gauge field of the un-Higgsed SO(2) ∼= U(1) subgroup

of the SO(3) ∼= SU(2). Interpreting this gauge field as the EM field and hence the rescaled

generator Q = gT 3 as the electric charge operator, we find that the physical Higgs field is

electrically neutral while the massive vector fields have electric charges q = ±g. To be precise,

the massive vector fields of definite charges are not the A1
µ and the A2

µ themselves but rather

their linear combination

W+
µ =

1√
2

(
A1
µ − iA2

µ

)
and W−

µ =
1√
2

(
A1
µ + iA2

µ

)
of charges q = ±g. (62)

For completeness sake, let’s re-express the theory at hand (usually called the Georgi–Glashow
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model) in terms of the physical fields of definite charges. Using U(1)–covariant derivatives

D̃µW
±
ν = ∂µW

±
ν ± igA3

µW
±
ν , (63)

we have

W±
µν

def
=

1√
2

(
F 1
µν ∓ iF±

µν

)
= D̃µW

±
ν − D̃νW

±
µ , (64)

but

F 3
µν = F̃µν + 2g Im

(
W+

µ W−
ν

)
where F̃µν = ∂µA

3
ν − ∂νA

3
µ . (65)

Consequently, the Lagrangian of the whole model — the kinetic terms, the mass terms, and

the interactions — can be expressed as

L = 1
2(∂µσ)

2 − 1
2M

2
σ × σ2 − 1

4 F̃µνF̃
µν − 1

2W
+
µνW

−µν + M2
WW+

µ W−ν

− λv

2
× σ3 − λ

8
× σ4 + 2gv × σ ×W+

µ W−µ + g2 × σ2 ×W+
µ W−µ

− g × F̃µν × Im
(
W+µW−ν

)
− g2 ×

(
Im
(
W+µW−ν

))2
.

(66)

General Case

Let’s take a closer look at eqs. (51) and (60), and focus on the mass terms for the vector

fields. In both cases, we start with the kinetic terms for the original scalar fields Φi(x) or

Φa(x), fix the unitary gauge, work through the algebra, and eventually obtain the kinetic term

for the physical Higgs field σ, the mass terms for the vector fields — or some of the vector

fields — and the interactions between the massive vectors and the Higgs σ. But is all we want

are the mass terms for the vectors, we may simply freeze σ(x) ≡ 0: This would eliminate the

interactions with the σ as well as the 1
2(∂µσ) term, and all we would have left are the mass

terms for the massive vectors.

Note that freezing σ(x) ≡ 0 is equivalent to freezing all the scalars at their VEVs, Φ(x) ≡
〈Φ〉. Consequently, to get the vector’s masses we do not need to go through the details of the

15



unitary gauge fixing, all we need are the scalar VEVs, then the kinetic terms for the frozen

scalars

Dµ〈Φ〉†Dµ〈Φ〉 or 1
2(Dµ〈Φ〉)2

become the mass terms for the vectors. For example, for the SO(3) triplet of real scalar fields

from the second example

Dµ〈Φ〉a = −gǫabcAb
µ × vδc3 = −gvǫab3 ×Ab

µ, (67)

Lvector
mass = 1

2

(
Dµ〈Φ〉a

)2
= 1

2(gv)
2 × ǫab3ǫac3Ab

µA
cµ

= 1
2

(
M = gv

)2 ×
(
A1
µA

1µ + A2
µA

2µ
)
. (68)

Likewise, for the SU(2) doublet of complex scalar fields from the first example,

Dµ〈Φ〉i =
ig

2

(
Aa
µσ

a
)i
j
× v√

2
δj2 =

igv

2
√
(2)

×
(
Aa
µσ

a
)i
2
, (69)

Dµ〈Φ〉∗i = − igv

2
√
2
×
(
Aa
µσ

a
)2
i
, (70)

Lvector
mass = Dµ〈Φ〉∗i Dµ〈Φ〉i =

g2v2

8
×
(
Aa
µσ

a
)2
i

(
Abµσb

)i
2

=
g2v2

8
×Aa

µA
bµ ×

[(
σaσb

)2
2
= δab − iǫab3

]

=
g2v2

8
×Aa

µA
bµ × δab 〈〈 since Aa

µA
bµ is symmetric in a ↔ b. 〉〉

=
M2

2
×Aa

µA
aµ for M =

gv

2
. (71)

This recipe — freezing Φ(x) ≡ 〈Φ〉 to find the vector masses — applies to any kind of gauge

theory with scalars in any kinds of multiplets. Indeed, consider a general gauge symmetry G

with generators T̂ a and gauge fields Aa
µ(x) (a = 1, . . . , dim(G)). Let scalars Φα(x) belonging

to some multiplet (m) of G develop non-zero vacuum expectation values 〈Φα〉 6= 0. Then the

covariant derivatives of these scalars

DµΦ
α(x) = ∂µΦ

α(x) + igAa
µ(x)×

(
T a
(m)

)α
β
Φβ(x) (72)
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become in the unitary gauge

DµΦ
α(x) = Dµ〈Φ〉α + terms involving the physical scalars (73)

where

Dµ〈Φ〉 = igAa
µ(x)×

(
T a
(m)

)α
β
〈Φ〉β . (74)

In eq. (73), the terms involving the physical scalars — and the physical scalar fields them-

selves — depend on the details of the unitary gauge fixing. On the other hand, the covariant

derivatives of the VEVs (74) depend only on the VEVs themselves. Moreover, such deriva-

tives are linear functions of the vector fields with constant coefficients, so their squares become

quadratic mass terms for the vectors,

Dµ〈Φ〉∗αDµ〈Φ〉α = −igAa
µ × 〈Φ〉∗β

(
T a
(m)

)β
α
× igAbµ ×

(
T a
(m)

)α
γ
〈Φ〉γ

= Aa
µA

bµ × g2 〈Φ〉∗β
(
T a
(m)T

b
(m)

)β
γ
〈Φ〉γ

〈〈 by a ↔ b symmetry of the Aa
µA

bµ 〉〉

= 1
2A

a
µA

bµ × g2 〈Φ〉∗β
{
T a
(m), T

b
(m)

}β
γ
〈Φ〉γ .

(75)

In other words,

Lvector
masses = 1

2

(
M2

V

)ab ×Aa
µA

bµ , (76)

where the mass2 matrix for the gauge fields obtains as

(
M2

V

)ab
= g2 〈Φ〉∗β

{
T a
(m), T

b
(m)

} γ

β
〈Φ〉γ ≡ g2 〈Φ〉†

{
T a
(m), T

b
(m)

}
〈Φ〉 . (77)

To be precise, eq. (77) applies to Higgs VEVs belonging to a single multiplet of complex

scalars. For a multiplet of real scalars, there is an extra factor 1
2 due to different normalization

of the VEVS, and for several Higgs multiplets with non-zero VEVs, the general formula is

(
M2

V

)ab
= g2

complex

Higgs

multiplets∑

Φ∈(m)

〈Φ〉†
{
T a
(m), T

b
(m)

}
〈Φ〉 + g2

real

Higgs

multiplets∑

Φ∈(m)

1
2 〈Φ〉

⊤{T a
(m), T

b
(m)

}
〈Φ〉 . (78)

In general, such mass2 matrix is not diagonal, and we need to diagonalize in order to find the

physical vector masses. For example, in the Glashow–Weinberg–Salam theory of the weak and
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EM interactions — it’s explained in the next set of notes — the mass matrix mixes the SU(2)

gauge field W 3
µ and the U(1) gauge field Bµ, and the mass eigenstates are the massless EM

field Aµ and the massive neural field Zµ involved in the weak interactions.

An additional complication of the GWS theory — or any other theory with non-simple

gauge group G = G1 × G2 × · · · — are different gauge couplings g for different factors G. In

this case, the g2 factor in eq. (78) for the mass2 matrix element (M2)ab should be replaced with

g(a)× g(b) where g(a) is the coupling of the gauge group factor containing the generator T a,

and likewise for the g(b). Thus, the most general formula for the vector mass matrix stemming

from the Higgs mechanism is

(
M2

V

)ab
= g(a) g(b)×




complex

Higgs

multiplets∑

Φ∈(m)

〈Φ〉†
{
T a
(m), T

b
(m)

}
〈Φ〉 +

1

2

real

Higgs

multiplets∑

Φ∈(m)

〈Φ〉⊤
{
T a
(m), T

b
(m)

}
〈Φ〉



.

(79)

In my notes on the GWS theory we shall see how this works in detail, and how the gauge

couplings affect the eigenstates of the mass matrix.
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