Finite Multiplets of the $\operatorname{Spin}(3,1)$ Group.

In these notes I classify all the finite multiplets of the continuous Lorentz group $S O^{+}(3,1)$, or rather of its double-covering group $\operatorname{Spin}(3,1)$. The notes are insterspersed with optional exercises for the students. The solutions to the exercises will appear in a separate page eparate page.

I presume you read these notes after finishing your homework\#5 and homework\#6, so you should be familiar with the Lorents $\hat{\mathbf{J}}$ and $\hat{\mathbf{K}}$ generators and their Dirac spinor representations. In these notes, it's convenient to re-organize the $\hat{\mathbf{J}}$ and $\hat{\mathbf{K}}$ generators into two non-hermitian 3 -vectors

$$
\begin{equation*}
\hat{\mathbf{J}}_{+}=\frac{1}{2}(\hat{\mathbf{J}}+i \hat{\mathbf{K}}) \quad \text { and } \quad \hat{\mathbf{J}}_{-}=\frac{1}{2}(\hat{\mathbf{J}}-i \hat{\mathbf{K}})=\hat{\mathbf{J}}_{+}^{\dagger} \tag{1}
\end{equation*}
$$

1. Show that the two 3 -vectors commute with each other, $\left[\hat{J}_{+}^{k}, \hat{J}_{-}^{\ell}\right]=0$, while the components of each 3 -vector satisfy angular momentum commutation relations, $\left[\hat{J}_{+}^{k}, \hat{J}_{+}^{\ell}\right]=$ $i \epsilon^{k \ell m} \hat{J}_{+}^{m}$ and $\left[\hat{J}_{-}^{k}, \hat{J}_{-}^{\ell}\right]=i \epsilon^{k \ell m} \hat{J}_{-}^{m}$.

By themselves, the $3 \hat{J}_{+}^{k}$ generate a symmetry group similar to rotations of a 3D space, but since the \hat{J}_{+}^{k} are non-hermitian, the finite irreducible multiplets of this symmetry are non-unitary analytic continuations (to complex "angles") of the ordinary angular momentum multiplets (j) of $\operatorname{spin} j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$ Likewise, the finite irreducible multiplets of the symmetry group generated by the \hat{J}_{-}^{k} are analytic continuations of the spin- j multiplets of angular momentum. Moreover, the two symmetry groups commute with each other, so the finite irreducible multiplets of the net Lorentz symmetry are tensor products $\left(j_{+}\right) \otimes\left(j_{-}\right)$ of the $\hat{\mathbf{J}}_{+}$and $\hat{\mathbf{J}}_{-}$multiplets. In other words, distinct finite irreducible multiplets of the Lorentz symmetry may be labeled by two integer or half-integer 'spins' j_{+}and j_{-}, while the states within such a multiplet are $\left|j_{+}, j_{-}, m_{+}, m_{-}\right\rangle$for $m_{+}=-j_{+}, \ldots,+j_{+}$and $m_{-}=$ $-j_{-}, \ldots,+j_{-}$.

The simplest non-trivial Lorentz multiplets are two inequivalent doublets, the left-handed Weyl spinor $\mathbf{2}$ and the right-handed Weyl spinor $\mathbf{2}^{*}$. The $\mathbf{2}$ multiplet has $j_{+}=\frac{1}{2}$ while $j_{-}=0$, hence $\hat{\mathbf{J}}_{+}$acts as $\frac{1}{2} \sigma$ while $\hat{\mathbf{J}}_{-}$does not act at all, or in terms of the $\hat{\mathbf{J}}$ and $\hat{\mathbf{K}}$ generators
$\mathbf{J}=\frac{1}{2} \boldsymbol{\sigma}$ while $\mathbf{K}=-\frac{i}{2} \boldsymbol{\sigma}$. The conjugate $\mathbf{2}^{*}$ multiplet has $j_{-}=\frac{1}{2}$ while $j_{+}=0$, hence $\hat{\mathbf{J}}$ acts as $\frac{1}{2} \boldsymbol{\sigma}$ while $\hat{\mathbf{K}}$ acts as $+\frac{i}{2} \boldsymbol{\sigma}$.
2. Check that these two doublets are indeed the LH Weyl spinors and the RH Weyl spinor from the homework set\#6 (problem 2).
3. Check that for finite Lorentz symmetries, the 2×2 matrices M_{L} and M_{R} representing them in the LH and the RH Weyl spinor multiplets have determinant $=1$.

The complex (but not necessary unitary) 2×2 matrices of unit determinant form a noncompact group called the $S L(2, \mathbf{C})$. This group is isomorphic to the $\operatorname{Spin}(3,1)$, the double cover of the continuous Lorentz group $S O^{+}(3,1)$. Just like the $S U(2)$ is isomorphic to the $\operatorname{Spin}(3)$, the double cover of the $S O(3)$ rotation group.

For the $\operatorname{Spin}(3)=S U(2)$ group, one can construct a multiplet of any spin j from a symmetric tensor product of $2 j$ doublets. This procedure gives us an object $\Phi_{\alpha_{1}, \ldots, \alpha_{2 j}}$ with $2 j$ spinor indices $\alpha_{1}, \ldots, \alpha_{2 j}=1,2$ that's totally symmetric under permutation of those indices and transforms under an $S U(2)$ symmetry U as

$$
\begin{equation*}
\Phi_{\alpha_{1}, \alpha_{2} \ldots, \alpha_{2 j}} \rightarrow U_{\alpha_{1}}^{\beta_{1}} U_{\alpha_{2}}^{\beta_{2}} \cdots U_{\alpha_{2 j}}^{\beta_{2 j}} \Phi_{\beta_{1}, \beta_{2} \ldots, \beta_{2 j}} . \tag{2}
\end{equation*}
$$

For integer j, such objects are equivalent to tensors of the $S O(3)$; for example, for $j=2$ $\Phi_{\alpha \beta} \equiv \Phi_{\beta \alpha}$ is equivalent to an $S O(3)$ vector $\vec{\Phi}$.

For the Lorentz group $\operatorname{Spin}(3,1)$ we have a similar situation - any multiplet can be constructed by tensoring together a bunch of two-component spinors of the $S L(2, \mathbf{C})$. But unlike the $S U(2)$, the $S L(2, \mathbf{C})$ has two different spinors $\mathbf{2} \not \approx \mathbf{2}^{*}$ transforming under different rules. Notationally, we shall distinguish them by different index types: the un-dotted Greek indices belong to spinor that transform according to $M \in S L(2, \mathbf{C})$ while the dotted Greek indices belong to spinors that transform according to M^{*} :

$$
\begin{equation*}
\left(\psi_{L}\right) \alpha \rightarrow M_{\alpha}^{\beta}\left(\psi_{L}\right)_{\beta} \not \not \approx \quad\left(\sigma_{2} \psi_{R}\right)_{\dot{\gamma}} \rightarrow M_{\dot{\gamma}}^{* \dot{\delta}}\left(\sigma_{2} \psi_{R}\right)_{\dot{\delta}}, \quad M \in S L(2, \mathbf{C}) . \tag{3}
\end{equation*}
$$

Combining such spinors to make a multiplet with 'spins' j_{+}and j_{-}, we make an object $\Phi_{\left.\alpha_{1}, \ldots, \alpha_{\left(2 j_{+}\right)}\right)} \dot{\gamma}_{1}, \ldots, \dot{\gamma}_{\left(2 j_{-}\right)}$with $2 j_{+}$un-dotted indices and $2 j_{-}$dotted indices. Φ_{\ldots} is totally
symmetric under permutations of the un-dotted indices with each other or dotted indices with each other, but there is no symmetry between dotted and un-dotted indices. Under an $S L(2, \mathbf{C})$ symmetry M, the un-dotted indices transform according to M while the dotted indices transform according to the M^{*}, thus
$\Phi_{\alpha_{1}, \ldots, \alpha_{\left(2 j_{+}\right)} ; \dot{\gamma}_{1}, \ldots, \dot{\gamma}_{\left(2 j_{-}\right)}} \rightarrow M_{\alpha_{1}}^{\beta_{1}} \cdots M_{\alpha_{\left(2 j_{+}\right)}}^{\beta_{\left(2 j_{+}\right)}} \times M_{\dot{\gamma}_{1}}^{* M \dot{\delta}_{1}} \cdots M_{\dot{\gamma}_{\left(2 j_{-}\right)}}^{* M \dot{\delta}_{\left(2 j_{-}\right)}} \cdots \times \Phi_{\beta_{1}, \ldots, \beta_{\left(2 j_{+}\right)} ; \dot{\delta}_{1}, \ldots, \dot{\delta}_{\left(2 j_{-}\right)}}$.

Of particular importance among such multi-spinors is the bi-spinor $V_{\alpha \dot{\gamma}}$ with $j_{+}=j_{-}=\frac{1}{2}$ - it is equivalent to the Lorentz vector V^{μ}. The map between bi-spinors and Lorentz vectors involves four hermitian 2×2 matrices $\sigma_{\mu}=(1, \boldsymbol{\sigma})$. In $S L(2, \mathbf{C})$ terms, each σ_{μ} matrix has one dotted and one un-dotted index, thus $\left(\sigma_{\mu}\right)_{\alpha \dot{\gamma}}$. Using the σ_{μ}, we may re-cast any Lorentz vector V^{μ} as a matrix

$$
\begin{equation*}
V^{\mu} \rightarrow V^{\mu} \sigma_{\mu}=V^{0}+\mathbf{V} \cdot \boldsymbol{\sigma} \tag{5}
\end{equation*}
$$

an hence as a $\left(\frac{1}{2}, \frac{1}{2}\right)$ bi-spinor

$$
\begin{equation*}
V_{\alpha \dot{\gamma}}=\left(V^{\mu} \sigma_{\mu}\right)_{\alpha \dot{\gamma}}=V^{0} \delta_{\alpha \dot{\gamma}}+\mathbf{V} \cdot \sigma_{\alpha \dot{\gamma}} . \tag{6}
\end{equation*}
$$

Under an $S L(2, \mathbf{C})$ symmetry, the bi-spinor transforms as

$$
\begin{equation*}
V_{\alpha \dot{\gamma}} \rightarrow V_{\alpha \dot{\gamma}}^{\prime}=M_{\alpha}^{\beta} M_{\dot{\gamma}}^{* \dot{\delta}} V_{\beta \dot{\delta}} \tag{7}
\end{equation*}
$$

or in matrix form,

$$
\begin{equation*}
V^{\mu} \sigma_{\mu} \rightarrow V^{\prime \mu} \sigma_{\mu}=M\left(V^{\mu} \sigma_{\mu}\right) M^{\dagger} \tag{8}
\end{equation*}
$$

Since the four matrices σ_{μ} form a complete basis of 2×2 matrices, eq. (8) defines a linear transform $V^{\prime \mu}=L_{\nu}^{\mu}(M) V^{\nu}$.
4. Prove that for any $S L(2, \mathbf{C})$ matrix M, the transform $L^{\mu}{ }_{\nu}(M)$ defined by eq. (8) is real (real V^{μ} for real V^{μ}), Lorentzian (preserves $V_{\mu}^{\prime} V^{\mu}=V_{\mu} V^{\mu}$) and orthochronous. Hint: prove and use $\operatorname{det}\left(V_{\mu} \sigma^{\mu}\right)=V_{\mu} V^{\mu}$.

* For extra challenge, show that this transform is proper, $\operatorname{det}(L)=+1$.

5. Verify that this $S L(2, \mathbf{C}) \rightarrow S O^{+}(3,1)$ map respects the group law, $L\left(M_{2} M_{1}\right)=$ $L\left(M_{2}\right) L\left(M_{1}\right)$.
6. Show that for the $L(M)$ defined by eq. (8), the LH Weyl spinor representation of $L(M)$ is $M_{L}(L)=M$ while the RH Weyl spinor representation is $\bar{M}=\sigma_{2} M^{*} \sigma_{2}$.

In general, any $\left(j_{+}, j_{-}\right)$multiplet of the $S L(2, \mathbf{C})$ with integer net spin $j_{+}+j_{-}$is equivalent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the tensors.) For example, the (1,1) multiplet is equivalent to a symmetric, traceless 2-index tensor $T^{\mu \nu}=+T^{\nu \mu}, T_{\mu}^{\mu}=0$. For $j_{+} \neq j_{-}$the representation is complex, but one can make a real tensor by combining two multiplets with opposite j_{+}and j_{-}, for example the $(1,0)$ and the $(0,1)$ multiplets are together equivalent to the antisymmetric 2-index tensor $F^{\mu \nu}=-F^{\nu \mu}$.
7. Verify the above examples.

Hint: For any kind of angular momentum, $\left(j=\frac{1}{2}\right) \otimes\left(j=\frac{1}{2}\right)=(j=1) \oplus(j=0)$.

