
GAUGE THEORIES

Gauge theories — abelian or non-abelian — are quantum theories of vector field Aa
µ(x)

whose interactions with each other and with other fields follows from a local symmetry. So

let me start these notes by explaining the difference between local and global symmetries:

⋆ A global symmetry — also called a rigid symmetry — has similar transformation of the

fields at all spacetime points x. For example, a global phase symmetry of a fermion

field Ψ(x) acts as

Ψ(x) → Ψ′(x) = eiθΨ(x), same θ for all x. (1)

⋆ In a local symmetry — also called a gauge symmetry — the field transformations at

different points x have independent parameters. For example, a local phase symmetry

of a fermion field Ψ(x) acts as

Ψ(x) → Ψ′(x) = eiθ(x)Ψ(x), independent θ(x) at each x. (2)

• A point of terminology: What a physicist calls a global symmetry, a mathematician

would call a local symmetry and vice verse — a local symmetry to a physicist is a global

symmetry to a mathematician. The terms rigid symmetry and gauge symmetry help

avoid the confusion — both physicists and mathematicians agree to their meaning.

Abelian Example: Local Phase Symmetry.

Before we delve into non-abelian gauge theory, let me start with an abelian example.

Consider a complex scalar field Φ(x) with a classical Lagrangian

L = ∂µΦ∗∂µΦ − m2Φ∗Φ − λ

2
(Φ∗Φ)2, (3)

which has a global phase symmetry Φ′(x) = eiθΦ(x). In fact, the potential terms here Φ∗Φ

and (Φ∗Φ)2 have a local phase symmetry Φ′(x) = eiθ(x)Φ(x), but the kinetic term does not
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have this local symmetry. Indeed, under this would-be local symmetry

∂µΦ
′(x) = eiθ(x)

(

∂µΦ(x) + iΦ(x)∂µθ(x)
)

, (4)

hence

∣

∣∂µΦ
′
∣

∣

2
=
∣

∣∂µΦ + iΦ∂µθ
∣

∣

2 6=
∣

∣∂µΦ
∣

∣

2
. (5)

However, we may repair this problem by replacing the ordinary field derivatives ∂µΦ and ∂µΦ
∗

with the covariant derivatives DµΦ and DµΦ
∗ which transform under the local symmetry

just line the field Φ and Φ∗ themselves:

Φ(x) → eiθ(x)Φ(x), DµΦ(x) → eiθ(x)DµΦ(x),

Φ∗(x) → e−iθ(x)Φ∗(x), DµΦ
∗(x) → e−iθ(x)DµΦ

∗(x).
(6)

Given such covariant derivatives, the Lagrangian

L = DµΦ∗DµΦ − V (Φ∗Φ) (7)

would be invariant under the local rather than global phase symmetry.

Likewise, a free Dirac fermion field with the Lagrangian

L = iΨγµ∂µΨ − mΨΨ (8)

has a global phase symmetry Ψ(x) → eiθΨ(x), but it can be promoted to a local phase

symmetry Ψ(x) → eiθ(x)Ψ(x) if we replace the ordinary derivative ∂µΨ with the covariant

derivative DµΨ, thus

L = iΨγµDµΨ − mΨΨ. (9)

To make the covariant derivatives, we need a connection — a 4-vector field Aµ(x) un-

dergoing a gauge transform parametrized by the same θ(x) as the local phase symmetry,
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thus

Φ′(x) = exp(+iθ(x))× Φ(x),

Φ∗′(x) = exp(−iθ(x))× Φ∗(x),

A′
µ(x) = Aµ(x) − ∂µθ(x)















for the same θ(x). (10)

Given such combined phase/gauge transformations of the fields, the covariant derivatives

DµΦ(x) = ∂µΦ(x) + iAµ(x)Φ(x),

DµΦ
∗(x) = ∂µΦ

∗(x) − iAµ(x)Φ
∗(x),

(11)

transform covariantly according to eq. (6). Indeed,

(DµΦ)
′ = ∂µΦ

′ + iA′ × Φ = ∂µ
(

eiθΦ
)

+ i
(

A − ∂µθ
)

× eiθΦ

= eiθ
(

∂µφ + iΦ∂µθ + iAµ × Φ − i∂µθ × Φ
)

= eiθ
(

∂µφ + iAµ × Φ
)

= eiθ ×DµΦ,

(12)

and likewise for the DµΦ
∗.

More generally, consider a theory with multiple complex fields ϕa(x); these fields may

be scalar, fermionic, vector, whatever, as long as they have definite charges qa WRT to the

phase symmetry. Under the local phase symmetry, all these fields and the connection Aµ(x)

transform according to

ϕ′
a(x) = exp(+iqaθ(x))× ϕa(x),

ϕ∗′
a (x) = exp(−iqaθ(x))× ϕ∗

a(x)

〈〈ϕ∗
a has charge −qa 〉〉,

A′
µ(x) = Aµ(x) − ∂µθ(x),



























all for the same θ(x). (13)

Under these transformation laws, the derivatives

Dµϕa = ∂µϕa + iqaAµ × ϕa , Dµϕ
∗
a = ∂µϕ

∗
a − iqaAµ × ϕ∗

a , (14)

are covariant:

(

Dµϕa(x)
)′

= exp(iqqθ(x))×Dµϕa(x),
(

Dµϕ
∗
a(x)

)′
= exp(−iqqθ(x))×Dµϕ

∗
a(x). (15)

For example, let’s identify the connection Aµ(x) with the electromagnetic field Aµ(x) and

let’s couple it to a bunch of scalar and fermionic fields of electric charges qa governed by the
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net Lagrangian

L = −1
4FµνF

µν +
scalars
∑

a

DµΦ
∗
aD

µΦa +
fermions
∑

a

Ψa(iγ
µDµ −ma)Ψa − V (scalars) + LYukawa .

(16)

As long as the scalar potential and the Yukawa couplings in this Lagrangian are invariant

under the global phase symmetry, the net Lagrangian would be invariant under the local

phase symmetry thanks to the covariance of the derivatives Dµ.

Algebra of Covariant Derivatives

• Multiple covariant derivatives of charged fields are all covariant:

(

DµDνϕa(x)
)′

= exp(iqaθ(x))×DµDνϕa(x),
(

DλDµDνϕa(x)
)′

= exp(iqaθ(x))×DλDµDνϕa(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(17)

• Leibniz rule

Dµ(ϕa × ϕb) = (Dµϕa)× ϕb + ϕa × (Dµϕb) for q(ϕa × ϕb) = qa + qb . (18)

Indeed,

Dµ(ϕa × ϕb) = ∂µ(ϕa × ϕb) + i(qa + qb)Aµ × ϕa × ϕb

= (∂µϕa)× ϕb + ϕa × (∂µϕb) + iqaAµϕa × ϕb + ϕa × iqbAµϕb

= (Dµϕa)× ϕb + ϕa × (Dµϕb).
(19)

◦ In particular, for qa + qb = 0 the product ϕa × ϕb is neutral, thus

(Dµϕa)× ϕb + ϕa × (Dµϕb) = ordinary ∂µ(ϕa × ϕb), (20)

which allows us to integrate by parts:
∫

d4x (Dµϕa)× ϕb +

∫

d4xϕa × (Dµϕb) =

∫

d4x ∂µ(ϕa × ϕb)

=

∫

boundary

d3xnµ(ϕa × ϕb)

usually = 0.

(21)

For example, the kinetic term for a charged scalar field Φ can be integrated by parts
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as
∫

d4x (DµΦ
∗)(DµΦ) = −

∫

d4xΦ∗(D2Φ) = −
∫

d4x (D2Φ∗)Φ. (22)

But the covariance of derivatives Dµ has its price: unlike the ordinary derivatives ∂µ,

the covariant derivatives Dµ do not commute with each other, DµDν 6= DνDµ. Indeed,

DµDνϕ = (∂µ + iqAµ)(∂ν + iqAν)ϕ

= ∂µ∂νϕ + iqAµ × ∂νϕ + iqAν × ∂µϕ + iq(∂µAν)× ϕ − q2AµAν × ϕ
(23)

where the blue terms on the RHS are symmetric WRT µ ↔ ν but the red term is not

symmetric. Consequently,

DµDνϕ − DνDµϕ = iq(∂µAν − ∂νAµ)× ϕ = iqFµν × ϕ, (24)

or in the operator language

[Dµ, Dν ] = iFµν × Q̂ (25)

where Q̂ is the electric charge operator, Q̂ϕ = qϕ.

Non Abelian Example: Local SU(N) Symmetry

Take N free Dirac fermions fields Ψ1, . . . ,ΨN of the same mass. The Lagrangian

L = Ψj(iγ
µ∂µ −m)Ψj 〈〈 implicit

∑

j 〉〉 (26)

is invariant under global symmetries which mix the Ψj(x) fields with each other,

Ψj′(x) = U j
kΨ

k(x) (27)

for a unitary N × N matrix ‖U j
k‖. Such matrices form a non-abelian group called U(N),

hence the U(N) group of global symmetries (27) of the N fermionic fields. To make our
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notations more compact, let’s assemble the Ψj into a column vector of length N while their

conjugates ψj form a row vector of the same length,

Ψ(x)
def
=







Ψ1(x)
...

ΨN (x)






, Ψ(x)

def
= (Ψ1(x) · · · ΨN (x) ) , (28)

then the global symmetries (27) become simply

Ψ′(x) = UΨ(x), Ψ
′
(x) = Ψ(x)U†, same U ∈ U(N) for all x. (29)

To promote the global unitary symmetries (29) to local symmetries

Ψ′(x) = U(x)Ψ(x), Ψ
′
(x) = Ψ(x)U†(x) for independent U(x) ∈ U(N) at each x, (30)

we turn the ordinary derivatives ∂µ in the Lagrangian (26) into covariant derivatives Dµ

such that

(

DµΨ(x)
)′

= U(x)DµΨ(x), (31)

then the new Lagrangian

L = Ψ(iγµDµ − m)Ψ (32)

would be invariant under the local symmetries (30).

To construct the derivatives

DµΨ(x) = ∂µΨ(x) + iAµ(x)Ψ(x) (33)

covariant WRT to U(N) symmetries, we need the matrix-valued connection Aµ(x), or in

other words, an N × N matrix ‖Aj
µk(x)‖ of vector fields. In components, the covariant

derivatives (33) act as

DµΨ
j(x) = ∂µΨ

j(x) + iAj
µk(x)Ψ

k(x). (34)

Similar to the abelian case, the local unitary symmetry of the Ψj(x) fields should be ac-

companied by the gauge transform of the vector fields Aj
µk(x), but the specific form of this
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gauge transform is more complicated than its abelian counterpart. Indeed, to achieve the

covariance of the derivatives (33), we need

(

DµΨ
)′

= ∂µ(Ψ
′ = UΨ) + iA′

µ(Ψ
′ = UΨ) = U∂µΨ + (∂µU)Ψ + iA′

µUΨ

=

U DµΨ = U∂µΨ + iUAµΨ,

and hence

iA′
µUΨ = iUAµΨ − (∂µU)Ψ. (35)

To make sure this relation works for any Ψ(x), we need

iA′
µ(x)U(x) = iU(x)Aµ(x) − ∂µU(x), (36)

so the non-abelian gauge transform of the matrix-valued connection Aµ(x) works according

to

A′
µ(x) = U(x)Aµ(x)U

−1(x) + i(∂µU(x))U
−1(x). (37)

Note: the first term on the RHS is peculiar to the non-abelian gauge transforms — in the

abelian case, it would be simply Aµ(x) — while the second term generalizes the −∂µθ(x).
Indeed, for N = 1 a unitary 1 × 1 matrix is simply a unimodular complex number u = eiθ.

Consequently, the U(1) symmetry group is the abelian group of phase symmetries, while

i(∂µu)× u−1 = i(∂µe
iθ)× e−iθ = −∂µθ, (38)

hence

A′
µ(x) = Aµ(x) − ∂µθ(x). (39)

Next, let’s take a closer look at the non-abelian vector fields. A priori, the connection

Aµ(x) is a complexN×N matrix of vector fields, which is equivalent to 2N2 real vector fields.
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However, we only need the Hermitian part of that matrix, A†
µ = Aµ, which is equivalent to

N2 real vector fields. Indeed, the second term in eq. (37) is always Hermitian,

[

i(∂µU)U
−1
]†

= −i
(

U−1
)†(

∂µU
†
)

〈〈 by unitarity of U , U† = U−1 〉〉

= −iU
(

∂µU
−1
)

= −iU
(

−U−1(∂µU)U
−1
)

= +i(∂µU)U
−1,

(40)

hence IF Aµ is Hermitian THEN so is A′
µ:

[

UAµU
−1
]†

=
(

U−1
)†A†

µU
† = UAµU

−1

⇐
=

[

A′
µ = UAµU

−1 + i(∂µU)U
−1
]†

= UAµU
−1 + i(∂µU)U

−1 = A′
µ .

(41)

Moreover, the unitary symmetry group U(N) is a direct product of SU(N) — the group

of unitary matrices with unit determinants — and the U(1) group of overall phases,

any U ∈ U(N) is U = eiθ × Ũ where det(Ũ) = 1 and θ =
arg(det(U))

N
. (42)

In terms of the fermion fields Ψj(x), the U(1) is the common phase symmetry — with the

same phase eiθ for all the Ψj , — while the SU(N) symmetries mix the fields with each other.

Consequently, the SU(N) and the U(1) connections are completely independent from each

other. Specifically, the U(1) connection AU(1)
µ is proportional to the unit matrix, while the

SU(N) connection is a traceless matrix. Indeed,

as long as detU(x) ≡ 1 and tr(Aµ(x)) ≡ 0, (43)

tr
(

−i(∂µU)U−1
)

= −i∂µ tr
(

log(U)
)

= −i∂µ log
(

det(U) = 1
)

= 0, (44)

tr
(

UAµU
−1
)

= tr
(

Aµ

)

= 0, (45)

hence tr
(

A′
µ(x)

)

= 0. (46)

In light of complete independence of the SU(N) and U(1) factors of the unitary group

U(N), I am going to restrict the local symmetries to the SU(N) factor while the U(1) factor
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remains a global phase symmetry. Consequently, there is no U(1) connection, while the

SU(N) connection Aµ is a traceless Hermitian matrix equivalent to N2−1 real vector fields

Aa
µ(x), a = 1, . . . , (N2 − 1).

For example, for N = 2 there are 3 independent traceless Hermitian matrices, namely

the Pauli matrices

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i
+i 0

)

, τ3 =

(

+1 0

0 −1

)

. (47)

Consequently, the SU(2) connection Aµ(x) can be written as

[

Aµ(x)
]j

k
=

∑

a=1,2,3

Aa
µ(x)×

(

τa

2

)j

k

(48)

in terms of 3 ordinary real vector fields Aa
µ(x).

For N ≥ 3, there are N2 − 1 independent traceless matrices, for example the Gell-Mann

matrices λa. Here is their explicit forms for N = 3:

λ1 =





0 1 0

1 0 0

0 0 0



 , λ2 =





0 −i 0

+i 0 0

0 0 0



 , λ3 =





+1 0 0

0 −1 0

0 0 0



 ,

λ4 =





0 0 1

0 0 0

1 0 0



 , λ5 =





0 0 −i

0 0 0

+i 0 0



 , λ6 =





0 0 0

0 0 1

0 1 0



 , λ7 =





0 0 0

0 0 −i

0 +i 0



 ,

λ8 =
1√
3





1 0 0

0 1 0

0 0 −2



 . (49)

Consequently, the SU(N) connection expands into N2 − 1 ordinary real vector fields as

[

Aµ(x)
]j

k
=

N2−1
∑

a=1

Aa
µ(x)×

(

λa

2

)j

k

(50)

For future reference, here are some properties of the Gell-Mann matrices:
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• Similar to the Pauli matrices τa, the Gell-Mann matrices λa are Hermitian, traceless,

and normalized to tr(λaλb) = 2δab.

• [λa, λb] = 2i
∑

c f
abcλc for some totally antisymmetric structure constants f [abc] of the

SU(N) Lie algebra. This commutation relation generalizes the isospin commutation

relation [τa, τ b] = 2i
∑

c ǫ
abcτ c for the Pauli matrices.

◦ Unlike the Pauli matrices, the Gell-Mann matrices do not anticommute with each other

and do not square to unit matrices, {λa, λb} 6= 2δab1N×N . Instead, for N ≥ 3 we have

{

λa, λb
}

=
4δab

N
1N×N +

∑

c

2dabcλc (51)

for some totally symmetric coefficients d(abc).

Now let’s go back to the component vector fields Aa
µ(x). Earlier in this section I wrote

down the non-abelian gauge transform of the vector fields in the matrix language, but trans-

lating it in terms of the component fields is rather painful. Or rather, it is quite painful for

finite local symmetries U(x), but it becomes much easier for infinitesimal symmetries: In

matrix language,

U(x) = exp(iΛ(x)) = 1 + iΛ(x) + O(Λ2) (52)

for some infinitesimal matrix-valued Λ(x). To keep the U(x) unitary and det(U) = 1, the

Λ(x) matrix should be Hermitian and traceless, hence

Λ(x) = Λa(x)× λa

2
〈〈 implicit

∑

a 〉〉 (53)

for some infinitesimal real numbers Λa(x). Under such infinitesimal local symmetries, the

fermionic fields Ψj(x) transform into

Ψj′(x) = Ψj(x) + iΛa(x)

(

λa

2

)j

k

Ψk(x) + O(Λ2Ψ). (54)

At the same time, for the vector fields we have

−i(∂µU)U−1 = −∂µΛ(x) + O(Λ2), (55)
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U Aµ U
−1 = Aµ + i[Λ,Aµ] + O(AΛ2), (56)

and hence to first order in Λ,

A′
µ(x) = Aµ(x) + i[Λ(x),Aµ(x)] − ∂µΛ(x). (57)

In components,

i[Λ(x),Aµ(x)] = Λb(x)×Ac
µ(x)× i

[

λb

2
,
λc

2

]

= Λb(x)×Ac
µ(x)×

(

−f bca λ
a

2
= −fabc λ

a

2

)

= −
(

fabcΛb(x)Ac
µ(x)

)

× λa

2
,

(58)

hence

A′
µ(x) =

λa

2
×
(

Aa
µ(x) − fabcΛb(x)Ac

µ(x) − ∂µΛ
a(x)

)

(59)

and therefore

Aa′
µ (x) = Aa

µ(x) − fabcΛb(x)Ac
µ(x) − ∂µΛ

a(x). (60)

Non Abelian Tension Fields

In an abelian U(1) gauge theory such as QED, the covariant derivatives Dµ do not

commute with each other, and their commutators are related to the EM tensions fields as

[Dµ, Dν ]Ψ(x) = iqFµν(x)Ψ(x). In non-abelian gauge theories, there is a similar relation in

the matrix language,

[Dµ, Dν ]Ψ(x) = iFµν(x)Ψ(x) (61)

where Fµν(x) is the matrix-valued tension field. But the relation of this tension field to the

connection Aµ(x) is more complicated than in the abelian case. To see how it works, let’s
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spell out the double covariant derivative

DµDνΨ = (∂µ + iAµ)(∂ν + iAν)Ψ

= ∂µ∂νΨ + iAµ × ∂νΨ + iAν × ∂µΨ + i(∂µAν)×Ψ − AµAν ×Ψ.
(62)

On the second line here I have color-coded in blue the terms which are symmetric WRT to

the µ ↔ ν interchange, and in red the terms which are not symmetric. Note that the last

term is not symmetric because the matrices Aµ and Aν generally do not commute with each

other. Consequently,

DµDνΨ − DνDµΨ = i(∂µAν)×Ψ − i(∂νAµ)×Ψ − AµAν ×Ψ + AνAµ ×Ψ, (63)

or in other words,

[Dµ, Dν ]Ψ(x) = iFµν(x)×Ψ(x) (64)

where

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x),Aν(x)]. (65)

Or in components,

Fµν(x) = Fa
µν(x)×

λa

2
for Fa

µν(x) = ∂µAa
ν(x) − ∂νAa

µ(x) − fabcAb
µ(x)Ac

ν(x). (66)

Unlike their abelian counterparts, the non-abelian tensions (65) are not gauge invariant.

Instead, they transform covariantly under the local SU(N) symmetries: In matrix language,

F ′
µν(x) = U(x)Fµν(x)U

−1(x). (67)

. This formula may be derived directly from eq. (65) and the non-abelian gauge trans-

form (37) of the vector field Aµ(x) — and perhaps I should make this derivation a part of a

future homework, — but it is much easier to obtain eq. (67) from the commutator (64) and
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the covariance of the derivative Dµ. Indeed, multiple derivatives like DµDνΨ(x) are just as

covariant as single derivatives,

for Ψ′(x) = U(x)Ψ(x),
[

D′
µ, D

′
ν ]Ψ

′(x) = U(x)
[

Dµ, Dν ]Ψ(x), (68)

hence in light of eq. (64),

iF ′
µν(x)× U(x)Ψ(x) = U(x)× iFµν(x)×Ψ(x), (69)

and therefore

F ′
µν(x) = U(x)×Fµν(x)× U−1(x). (67)

In components, the Fa
µν(x) tension fields transform into each other according to the

adjoint representation of the local symmetry U(x),

Fa′
µν(x) = Rab

adj(U(x))× F b
µν(x), (70)

where

Rab
adj(U) = 1

2 tr
(

λaUλbU−1
)

(71)

is an orthogonal (N2− 1)× (N2 − 1) matrix. For example, for the SU(2) isospin symmetry,

U is the iso-doublet representation of some iso-space rotation while Rab(U) is the iso-vector

representation of the same rotation.

While the tension fields themselves are not gauge invariant, there is an invariant quadratic

combination tr
(

FµνFµν
)

. Indeed,

tr
(

F ′
µνFµν′

)

= tr
(

UFµνU
−1 × UFµνU−1

)

= tr
(

FµνFµν
)

. (72)

In components,

tr
(

FµνFµν
)

= Fa
µνF bµν ×

(

tr

(

λa

2

λb

2

)

=
δab

2

)

=
1

2
Fa
µνFaµν , (73)

and that’s why the adjoint representation matrix Rab
adj(U) in eq. (70) must be an orthogonal

matrix.
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Yang–Mills Theory

Yang–Mills theory is the theory of non-abelian gauge fields Aa
µ(x) interacting with each

other; there are no other fields. The physical Lagrangian of the theory is simply

L = − 1

2g2
tr
(

FµνFµν
)

= − 1

4g2
Fa
µνFaµν (74)

for

Fa
µν

def
= ∂µAa

ν − ∂νAa
µ − fabcAb

µAc
ν . (75)

The 1/g2 factor in the Yang–Mills Lagrangian (74) makes for non-canonical normalization

of the gauge fields Aa
µ. To get the canonically normalized vector fields, we rescale

Aa
µ(x) =

1

g
Aa

µ(x) and F a
µν(x) =

1

g
Fa
µν(x), (76)

hence

L = −1
4F

a
µνF

aµν (77)

for

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (78)

For small g ≪ 1, we may treat the non-abelian parts of F a
µν as small perturbation, hence

L = −1
4

(

∂µA
a
ν − ∂νA

a
µ

)2
+
g

2

(

∂µA
a
ν − ∂νA

a
µ

)

×fabcAbµAcν − g2

4
fabcfadeAb

µA
c
νA

dµAeν (79)

where the quadratic term on the RHS describes N2 − 1 species of free photon-like gluons,

while the cubic and the quartic terms describe the interactions between the gluon fields.
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Quantum Chromodynamics

Quantum ChromoDynamics or QCD is the theory of quarks and gluons — from which

all the strongly interacting particles are made. The quarks are Dirac fermions Ψj
f (x) which

come in three colors (j = 1, 2, 3) and six flavors f = u, d, s, c, b, t. Quark masses depend on

the flavor but not on the color, and there is exact SU(3) symmetry mixing the colors. This

color symmetry is local rather than global, which gives rise to N2
c −1 = 8 species of massless

vector fields Aa
µ(x) called the gluons. The physical Lagrangian of QCD is quite simple: in

matrix notations for the color,

L = −1
2 tr
(

FµνF
µν
)

+
∑

f

Ψf

(

iγµDµ − mf

)

Ψf (80)

where Fµν = ∂µAν − ∂νAµ + ig
[

Aµ, Aν

]

(81)

and DµΨ
j
f = ∂µΨf + igAµΨ, (82)

while in explicit color-index notations

L = −1
4 F

a
µνF

aµν +
∑

f
Ψf,j

(

iγµDµ − mf

)

Ψj
f , (83)

DµΨ
j
f = ∂µΨ

j
f +

ig

2
Aa
µ

(

λa
)j

k
Ψk

f , (84)

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (85)

To set up the perturbation theory, we should expand the Lagrangian (83) in powers

of g. We should also add a gauge-fixing term for each gluon field Aa
µ to give them useful

photon-like propagators, for example

Lg.f. = − 1

2ξ

(

∂µAa
µ

)2
. (86)

Thus altogether

LQCD
phys + LQCD

g.f. = −1

2

(

∂µA
a
ν

)2
+

1− ξ−1

2

(

∂µAa
µ

)2
+
∑

f

Ψf,j(iγ
µ∂µ −mf )Ψ

j
f

+ gfabc(∂µA
a
ν)A

bµAcν − g2

4
fabcfadeAb

µA
c
νA

dµAeν

+
ig

2
Aa
µ ×

∑

f
Ψf,iγ

µ(λa)ijΨ
j
f .

(87)

The first line of this expansion describes the free gluon and quark fields, while the second
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and third lines describe their interactions. Consequently, the tree-level Feynman rules for

QCD are as follows:

• The gluon propagator

a

µ

b

ν
=

−iδab
k2 + i0

(

gµν + (ξ − 1)
kµkν

k2 + i0

)

(88)

where ξ is the gauge-fixing parameter. For ξ = 0 we have the Landau gauge while for

ξ = 1 — the Feynman gauge.

• The quark propagator

f

i

f ′

j
=

iδijδff ′

6p−mf + i0
. (89)

Note: the colors and the flavors must be the same at both ends of the propagator.

• The three-gluon vertex

a
α

k1

b
β

k2

c
γ

k3

= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

.

(90)

• The four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (91)
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• The quark-antiquark-gluon vertex

a

µ

i f

j f
′

= −igγµ × δff ′ ×
(

λa

2

)j

i

. (92)

Note: the quark lines connected to the vertex must have the same flavors f ′ = f but

they may have different colors j 6= i.

∗ The external line factors and the sign rules of QCD are exactly the same as in QED.

The above Feynman rules are OK at the tree level but insufficient for the loop calcula-

tions. For one thing, beyond the tree level we would need a bunch of counterterm vertices to

cancel the UV divergences of the loop graphs. But there is also a deeper problem stemming

from the gauge-fixing the gluon fields. In abelian gauge theories like QED, linear gauge-fixing

constraints like ∂µA
µ = 0 are harmless, but in non-abelian gauge theories such constraints

screw up the analogues of Ward–Takahashi identities which we need to properly handle

the loop graphs. In the path integral formalism, the gauge-fixing constraints screw up the

measure of the path integral, but we can un-screw it by introducing additional un-physical

fields called the ghosts. In Feynman rules, there are ghost propagators and ghost-ghost-gluon

vertices, but no external ghost lines — the ghosts may run in loops but never as external

particles.

I shall explain this issue in detail later this semester, once you have learned the basics

of the path-integral formalism.

General Gauge Symmetries

There are more types of non-abelian gauge symmetry groups than SU(N). In general,

we may have any compact Lie group G whose generators T̂ a form the correspondent Lie

algebra G; that is, they obey the commutation relations

[

T̂ a, T̂ b
]

= ifabcT̂ c (93)

for the appropriate structure constants f [abc]. For each generator T̂ a there is a vector field
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Aa
µ(x), which acts as a component of the Lie-algebra-valued connection

Aµ(x) = gAa
µ(x)× T̂ a. (94)

The curvature for this connection is the Lie-algebra-valued antisymmetric tensor field

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i
[

Aµ(x),Aν(x)
]

, (95)

or in components

Fµν(x) = gF a
µν(x)× T̂ a for F a

µν(x) = ∂µA
a
ν(x) − ∂νA

a
µ(x) − igfabcAb

µ(x)A
c
ν(x). (96)

The local symmetries are parametrized by u(x) ∈ G — for each x there is an element of

the gauge group G. For infinitesimal symmetries

u(x) = exp
(

iΛa(x)T̂ a
)

= 1 + iΛa(x)× T̂ a + O(Λ2) (97)

for some infinitesimal real parameters Λa(x). Under such infinitesimal symmetries, the gauge

fields Aa
µ(x) transform inhomogeneously as

δAa
µ(x) = −1

g
∂µΛ

a(x) − fabcΛb(x)Ac
µ(x) (98)

which the tension fields F a
µν(x) transform homogeneously as

δF a
µν(x) = −fabcΛb(x)F c

µν(x). (99)

The matter fields — scalars and fermions — form complete multiplets of the gauge

symmetry group G. In each such multiplet (m), the generators T̂ a of G are represented by
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|m|×|m|matrices T a
(m) obeying the same commutation relations as the generators themselves,

[

T a
(m), T

b
(m)

]

= ifabc × T c
(m) . (100)

Under infinitesimal gauge symmetries, a field Ψα belonging to some multiplet (m) is mixed

with other fields Ψβ belonging to the same multiplet according to

δΨα(x) = iΛa(x)
[

T a
(m)

]α

β
Ψβ(x). (101)

The covariant derivatives DµΨ
α also mix up fields belonging to the same multiplet (m);

specifically,

DµΨ
α(x) = ∂µΨ

α(x) + igAa
µ(x)

[

T a
(m)

]α

β
Ψβ(x). (102)

Note different matrices T a
(m) for covariant derivatives of fields belonging to different multiplet

types; this is similar to different fields having different electric charges in QED.

Let’s verify the covariance of the derivatives (102) WRT infinitesimal gauge symmetries.

In matrix language — where we treat the whole multiplet of fields Ψα as a column vector

Ψ, we have

δDµΨ = ∂µδΨ + igAa
µT

a
(m) × δΨ + igδAa

µ × T a
(m)Ψ

= iΛaT a
(m) × ∂µΨ + i(∂µΛ

a)× T a
(m)Ψ − gAa

µT
a
(m) × ΛbT b

(m)Ψ

− i(∂µΛ
a)× T a

(m)Ψ − igfabcΛbAc
µ × T a

(m)Ψ

〈〈 relabeling indices 〉〉

= iΛaT a
(m) × ∂µΨ − gAc

µT
c
(m) × ΛaT a

(m)Ψ − igf bacΛaAc
µ × T b

(m)Ψ

= iΛa ×
(

T a
(m)∂µΨ + igAc

µ ×
(

T c
(m)T

a
(m)Ψ − if bacT b

(m)Ψ
))

(103)

where

if bacT b
(m) = ifacbT b

(m) =
[

T a
(m), T

c
(m)

]

=⇒ T c
(m)T

a
(m)Ψ − if bacT b

(m)Ψ = T a
(m)T

b
(m)Ψ,

(104)

hence

δDµΨ = iΛa ×
(

T a
(m)∂µΨ + igAc

µT
a
(m)T

c
(m)Ψ

)

= iΛaT a
(m) ×

(

∂µΨ + igAc
µT

c
(m)Ψ

)

= iΛaT a
(m) ×DµΨ,

(105)

quod erat demonstrandum.
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To save time, I am not going to prove the covariance of Dµ under finite gauge transforms

u(x). Instead, let me simply summarize how such finite gauge transforms act on various

fields. In general,

any finite u ∈ G is u = exp(iΛaT̂ a) for some finite Λa, (106)

and the representation of this finite group element in a multiplet type (m) is a finite matrix

R(m)(u) = exp
(

iΛaT a
(m)

)

. (107)

Consequently, under a finite gauge transform u(x) = exp(iΛa(x)T̂ a), matter fields Ψα(x)

belonging to a multiplet (m) mix with each other — but only with the members of the same

multiplet — as

Ψα′(x) =
[

exp
(

iΛaT a
(m)

)]α

β
Ψβ(x). (108)

As to the gauge fields, it is best to write their transformation laws in terms of the Lie-

algebra-valued connection Aµ(x) and curvature Fµν(x):

A′
µ(x) = i(∂µu(x))u

−1(x) + u(x)Aµ(x)u
−1(x), (109)

F ′
µν(x) = u(x)Fµν(x)u

−1(x). (110)

In components, eq. (109) becomes rather unwieldy, but eq. (110) amounts to F a
µν(x) forming

an adjoint multiplet of G, thus

F a′
µν(x) = Rab

adj(u(x))× F b
µν(x). (111)

Note: any simple Lie group has an adjoint representation where the generators T̂ a are

represented by

[

T a
adj

]bc
= ifabc; (112)

the commutation relations between these dim(G)× dim(G) matrices follow from the Jacobi

identity for the Lie algebra G. Example: for the isospin symmetry SU(2), the adjoint

multiplet is the iso-vector 3.
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Fields Φa(x) in an adjoint multiplet transform under infinitesimal gauge symmetries as

δΦa(x) = −fabcΛb(x)Φc(x) (113)

and the covariant derivatives Dµ act on them as

DµΦ
a(x) = ∂µΦ

a(x) − gfabcAb
µ(x)Φ

c(x). (114)

Or in matrix form — or rather Lie algebra form — Φ̂(x) = Φa(x)T̂ a,

δΦ̂(x) = i[Λ̂(x), Φ̂(x)], DµΦ̂ = ∂µΦ̂(x) + i[Aµ(x), Φ̂(x)]. (115)

The Lie algebra form also makes it easy to write down the finite gauge transform of an

adjoint multiplet,

Φ̂′(x) = u(x)Φ̂(x)u−i(x). (116)

Thus, the tension fields F a
µν(x) indeed form an adjoint multiplet of the gauge symmetry.

Combined Gauge Symmetries

A gauge symmetry group G does not have to be simple. It may also be a direct product

of several simple or abelian factors,

G = G1 ×G2 ×G3 × · · · , (117)

where each factor Gi comes with its own gauge fields — one for each generator of Gi — and

its own gauge coupling gi, thus

L =
∑

i

−1

2g2i
tr
(

FµνFµν
)

Gi

+ L[matter]. (118)

For example, the Standard Model has G = SU(3) × SU(2) × U(1); the SU(3) — which

acts on quark colors — comes with 8 gluon fields Ga
µ which are responsible for the strong

interactions; while the 3 gauge fields Wa
µ of the SU(1) and 1 gauge field Bµ of the U(1) are
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responsible for the weak and the electromagnetic interactions. The three factors of the gauge

group have rather different couplings,

LSM = − 1

2g23
tr
(

GµνGµν
)

− 1

2g22
tr
(

WµνWµν
)

− 1

4g21
BµνBµν + L[matter], (119)

for

4π

g23
≈ 9.23,

4π

g22
≈ 29.97,

4π

g21
≈ 97.76. (120)

(Running couplings in the MS renormalization scheme at E =Mt = 173.3 GeV.)

The matter multiplets of product gauge groups (117) are products of multiplets of the

individual factors,

(m) = (m1)⊗ (m2)⊗ (m3)⊗ · · · , (m1) of G1, (m2) of G2, (m3) of G3, . . . . (121)

For the abelian factors of G (if any), all multiplets are singlets but they may have different

U(1) charges (which we need to specify). For example, the fermionic fields of the Standard

Model form 5 kinds of SU(3)× SU(2)× U(1):

• Left-handed quarks form color triplets, SU(2) doublets — (u, d), (c, s), and (t, b), —

and have U(1) hypercharge y = +1
6 . Consequently, for these fields

Dµψ
j,α
Q = ∂µψ

j,α
Q +

ig3
2
Ga

µ(λ
a)jkψ

k,α
Q +

ig2
2
W a

µ (τ
a)αβψ

j,β
Q +

ig1
6
BµΨ

j,α
Q . (122)

• Right-handed quarks of flavors u, c, t form color triplets but they are singlets of SU(2)

and have hypercharge y = +2
3 , hence for these fields

Dµψ
j
U = ∂µψ

j
U +

ig3
2
Ga

µ(λ
a)jkψ

k
U +

2ig1
3

BµΨ
j
Q . (123)

• Right-handed quarks of flavors d, s, b also form color triplets and SU(2) singlets, but

they have hypercharge y = −1
3 , hence for these fields

Dµψ
j
D = ∂µψ

j
D +

ig3
2
Ga

µ(λ
a)jkψ

k
D − ig1

3
BµΨ

j
D . (124)

• Left-handed leptons are color-singlets but SU(2) doublets (νe, e
−), (νµ, µ

−), (ντ , τ
−)
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of hypercharge y = −1
2 . Hence, for these fields

Dµψ
α
L = ∂µψ

α
L +

ig2
2
W a

µ (τ
a)αβψ

β
L − ig1

2
BµΨ

β
L . (125)

• Right-handed charged leptons e−, µ−, τ− are singlets of both SU(3)color and SU(2),

and have hypercharge y = −1, hence

DµψE = ∂µψE − ig1BµψE . (126)

◦ It is not known whether the right-handed neutrinos exist at all, but if they do exist,

they are singlets of both SU(3) and SU(2) and have zero hypercharges. Thus, they do

not couple to any gauge fields of the standard model and

DµψN = ∂µψN + 0. (127)
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