
Fluctuations in Superfluid Helium

Last supplementary lecture I wrote down the Landau–Ginzburg theory of superfluid

helium and its classical field theory limit — a complex scalar field φ(x, t) with Hamiltonian

H =

∫

d3x

(

1

2m
|∇φ|2 +

λ

2
|φ|4 − µ|φ|2

)

. (1)

For positive chemical potential µ, the ground state of the superfluid has non-zero value of

the scalar field, namely

|φ|2 = n̄s =
µ

λ
. (2)

The phase of φ is arbitrary, as long as it is the same at all x (in the non-moving superfluid),

so without loss of generality we assume φground =
√
n̄s.

Let’s study the small fluctuations around this ground state,

φ(x, t) =
√
n̄s + δφ(x, t). (3)

In terms of the fluctuation δφ, the Kinetic part of the Hamiltonian (1) becomes

1

2m
|∇φ|2 =

1

2m
|∇δφ|2 , (4)

while for the potential part we have

V (φ∗, φ) =
λ

2
|φ|4 − µ|φ|2 =

λ

2

(

φ∗φ − n̄s

)2
+ constant, (5)

φ∗φ − n̄s = n̄s +
√
n̄s
(

δφ+ δφ∗) + |δφ|2 − n̄s , (6)

V (δφ∗, δφ) =
λn̄s
2

(

δφ+ δφ∗
)2

+ λ
√
n̄s
(

δφ+ δφ∗
)

× δφ∗δφ +
λ

2
|δφ|4.

Altogether,

H = Hfree + Hint + constant (7)

where

Hfree =

∫

d3x

(

1

2m
|∇δφ|2 +

λn̄s
2

(

δφ+ δφ∗
)2
)

(8)

while the Hint comprises the cubic and the quartic terms in the fluctuations δφ and δφ∗.
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In the quantum Landau–Ginzburg theory, the quantum field

δψ†(x) = ψ†(x) −
√
n̄s = L−3/2

∑

k 6=0

eikxâ†
k

(9)

creates Helium atoms outside the Bose–Einstein condensate while the field

δψ(x) = ψ(x) −
√
n̄s = L−3/2

∑

k 6=0

e−ikxâk (10)

annihilates such atoms, and the Hamiltonian operator follows from the classical Hamiltonian,

Ĥ = Ĥfree + constant + perturbations (11)

where

Ĥfree =

∫

d3x

(

1

2m
∇δψ̂† · ∇δψ̂ + λn̄s

(

δψ̂†δψ̂ + 1
2δφ̂

2 + 1
2δψ̂

†2
)

)

=
∑

k 6=0

((

k2

2m
+ λn̄s

)

â†kâk + 1
2λn̄s

(

âkâ−k + â†kâ
†
−k

)

) (12)

To diagonalize this Hamiltonian — or more generally, any Hamiltonian of the form

Ĥ =
∑

k

(

Akâ
†
k
â
k

+ 1
2Bk

(

â
k
â−k

+ â†
k
â†−k

)

)

, (13)

(with real Ak = A−k and Bk = B−k), we use the Bogolyubov transform of the creation

and annihilation operators:

b̂k = cosh(tk)× âk + sinh(tk)× â†−k ,

b̂†k = cosh(tk)× â†k + sinh(tk)× â−k .
(14)

for some real parameters tk = t−k.
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Lemma 1: For any real tk = t−k, the b̂k and b̂†k operators obey the same bosonic

commutation relations as the â
k
and â†

k
operators,

[

b̂
k
, b̂

k′

]

= 0,
[

b̂†
k
, b̂†

k′

]

= 0,
[

b̂
k
, b̂†

k′

]

= δk,k′ . (15)

Lemma 2: For any Hamiltonian of the form (13) with real Ak = A−k, real Bk = B−k

and |Bk| < Ak, there is a Bogolyubov transform (14) with

tk = 1
2 artanh

Bk

Ak

, (16)

which leads to

Ĥ =
∑

k

ω(k)b̂†kb̂k + constant (17)

for ω(k) =
√

A2
k −B2

k . (18)

Physically, the b̂†
k
operators create while the b̂

k
operators annihilate some kind of quasi-

particles of energy ω(k), and the ground state of the Hamiltonian (17) is the quasiparticle

vacuum, the state annihilated by all the b̂ operators,

∀k, b̂k |ground〉 = 0. (19)

Lemma 3: In terms of the original âk and â†k operators and the state |BEC〉 annihilated
by all the â

k
operators with k 6= 0,

|ground〉 = exp

(

−1

2

∑

k

tanh(tk)â
†
k
â†−k

− const

)

|BEC〉 (20)

where |BEC〉 is the state annihilated by all the âk operators for k 6= 0. In the liquid helium

context, |BEC〉 is the pure Bose–Einstein condensate state — all the atoms are in the k = 0

mode so there are no atoms in the other modes. By comparison, the state (20) has a lot

of atoms paired-up in ±k modes, and indeed, the experiments with BEC condensates of

ultra-cold atoms show more atoms in such ±k pairs than the atoms in the k = 0 condensate

itself.
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Lemma 4: The quasiparticle vacuum state (20) has zero net mechanical momentum,

while the quasiparticles have definite momenta k, thus

P̂net =
∑

k

kâ†kâk =
∑

k

kb̂†kb̂k . (21)

I shall prove the Lemmas 1–4 later in these notes, but first let me apply them to the

superfluid helium. In the Landau–Ginzburg theory, the Hamiltonian for the fluctuation fields

— or rather the free part of that Hamiltonian — has form

Ĥfree =
∑

k 6=0

((

k2

2m
+ λn̄s

)

â†
k
â
k

+ 1
2λn̄s

(

â
k
â−k

+ â†
k
â†−k

)

)

(22)

which is a special case of (13) with

Ak =
k2

2m
+ λn̄s , Bk = λn̄s, (23)

hence

tk =
1

2
artanh

2λn̄sm

2λn̄2m + k2
−→

{∞ for small k,

0 for large k.
(24)

while

ω(k) =

√

(

k2

2m
+ λn̄s

)2

− (λn̄s)2 = k ×
√

k2

4m2
+
λn̄s
m

. (25)
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Graphically,

k

ω(k)

phonons, ω ≈ cs × k

atoms knocked out of BEC, ω ≈ k2

2m

Lemma 5: Beyond the Landau–Ginzburg approximation, a finite-range two-body po-

tential V2(x− y) between helium atoms leads to the fluctuation Hamiltonian (or rather, its

free part) of the form

Ĥfree =
1

2m

∫

d3x∇δφ̂† · ∇δψ̂

+

∫

d3x

∫

d3y V2(x− y)×
(

ψ̂†(x)ψ̂(y) + 1
2 ψ̂(x)ψ̂(y) + 1

2 ψ̂
†(x)ψ̂†(y)

)

=
∑

k 6=0

((

k2

2m
+ n̄sW (k)

)

â†kâk + 1
2 n̄sW (k)

(

âkâ−k + â†kâ
†
−k

)

)

(26)

where W (k) is the Fourier transform of the two-body potential,

W (k) =

∫

d3x e−ikxV2(x). (27)
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Consequently,

Ĥfree =
∑

k 6=0

ω(k)b̂†kb̂k (28)

for quasiparticle energies

ω(k) =

√

(

k2

2m
+ n̄sW (k)

)2

− (λn̄s)2 = k ×
√

k2

4m2
+
n̄s
m
W (k) . (29)

For the helium atoms, the W (k) drops off at large momenta,

k

W (k)

hence the energy-momentum relation ω(k) for the quasiparticles — or equivalently, the

wavenumber-frequency dispersion relation for the waves of small fluctuations — has a dip:
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k

ω(k)

ω
k = vc

ω = csk

ω = k2

2m

I shall explain the significance of this curve in the blackboard part of the supplementary

lecture.

Proofs of the Lemmas

Lemma 1: the bosonic commutation relations (15) for the quasiparticle creation and

annihilation operators. Starting from the bosonic commutation relations

[âk, âk′] = 0, [â†k, â
†
k′] = 0, [âk, â

†
k′] = δk,k′ (30)

for the operators creating and annihilating the helium atoms and treating eqs. (14) as the

definitions of the b̂k and b̂†k operators, we immediately calculate

[b̂k, b̂k′ ] = cosh(tk) sinh(tk′)×
(

[âk, â
†

−k′] = δk,−k′

)

+ sinh(tk) cosh(tk′)×
(

[â†−k, âk′] = −δ−k,k′

)

= δk′,−k ×
(

cosh(tk) sinh(tk′) − sinh(tk) cosh(tk′) = sinh(tk′ − tk)
)

= 0 because t′k = tk when k′ = −k.

(31)
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In the same way, [b̂†k, b̂
†
k′ ] = 0.

Finally,

[b̂k, b̂
†
k′] = cosh(tk) cosh(tk′)×

(

[âk, â
†
k′] = δk,k′

)

+ sinh(t−k) sinh(t−k′)×
(

[â†−k, â−k′] = δ−k,−k′

)

= δk,k′ ×
(

cosh2(tk)− sinh2(t−k) = cosh2(tk)− sinh2(tk) = 1
)

= δk,k′ .

(32)

Quod erat demonstrandum.

Lemma 2: bringing the Hamiltonian (13) to the form (17). Let’s start by expressing

the product b̂†
k
b̂
k
in terms of the â† and â operators. Applying both definitions (14), we

immediately obtain

b̂†kb̂k = cosh2(tk) â
†
kâk + cosh(tk) sinh(tk) (â

†
kâ

†
−k + â−kâk)

+ sinh2(tk) (â−kâ
†
−k = â†−kâ−k + 1).

(33)

Likewise,

b̂†−k
b̂−k

= cosh2(t−k) â
†
−k
â−k

+ cosh(t−k) sinh(tk) (â
†
−k
â†
k
+ â

k
â−k

)

+ sinh2(t−k) (âkâ
†
k
= â†

k
â
k
+ 1).

(34)

Assuming t−k = tk, we may combine

b̂†kb̂k + b̂†−kb̂−k =
(

cosh2(tk) + sinh2(tk) = cosh(2tk)
)

× (â†kâk + â†−kâ−k)

+
(

2 cosh(tk) sinh(tk) = sinh(2tk)
)

× (â†kâ
†
−k + â−kâk) + const.

(35)

Now let’s plug this formula into a Hamiltonian of the form (17) for some ωk and require that

the result matches the original Hamiltonian (13). Assuming ω−k ≡ ωk, we obtain

Ĥ =
∑

k

ωkb̂
†
k
b̂
k

=
1

2

∑

k

ωk(b̂
†
k
b̂
k
+ b̂†−k

b̂−k
)

=
∑

k

ωk cosh(2tk)â
†
k
â
k

+ 1
2

∑

k

ωk sinh(2tk)
(

â†
k
â†−k

+ â−k
â
k

)

+ const.
(36)

This formula must match (up to a constant) the original Hamiltonian (13), so we need to
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choose the parameters ωk = ω−k and tk = t−k such that

ωk cosh(2tk) = Ak and ωk sinh(2tk) = Bk . (37)

These equations are easy to solve, and the solution exists as long as Ak = A−k, Bk = B−k,

and Ak > |Bk|, namely

tk =
1

2
artanh

Bk

Ak

and ωk =
√

A2
k − B2

k . (38)

Quod erat demonstrandum.

Lemma 3: the ground state annihilated by all the b̂
k
operators. Let’s focus on a single

pair of opposite momenta ±k. In other words, consider the Hilbert space of two harmonic

oscillators for the operators âk, â
†
k, â−k, â

†
−k. In that Hilbert space, consider the state

|Ψ〉 = C × exp(−τ â†kâ
†
−k) |0, 0〉 (39)

where τ = tanh(tk) while C = 1/ cosh(tk) is the normalization coefficient. Expanding the

exponent, we have

|Ψ〉 = C ×
∞
∑

n=0

(−τ)n
n!

(â†k)
n(â†−k)

n |0, 0〉

= C ×
∑

n

(−τ)n
n!

(
√
n!)2 |n, n〉

= C ×
∑

n

(−τ)n |n, n〉 .

(40)

Note normalization:

〈Ψ|Ψ〉 = C2 ×
∑

n

(−τ)2n =
C2

1− τ2
=

(

1/ cosh(tk)
)2

1 − tanh2(tk)
= 1. (41)
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Let’s act on the state |Ψ〉 with the quasiparticle annihilation operators b̂k and b̂−k:

b̂k |Ψ〉 = cosh(tk)× âk |Ψ〉 + sinh(tk)â
†
−k |Ψ〉

= C cosh(tk)×
∞
∑

n=1

(−τ)n ×
√
n |n− 1, n〉

+ C sinh(tk)×
∞
∑

n=0

(−τ)n ×
√
n+ 1 |n, n + 1〉

〈〈 changing n→ n + 1 in the first sum only 〉〉

= C cosh(tk)×
∞
∑

n=0

(−τ)n+1 ×
√
n+ 1 |n, n + 1〉

+ C sinh(tk)×
∞
∑

n=0

(−τ)n ×
√
n+ 1 |n, n + 1〉

〈〈 noting similarity of the two sums except for the power of (−τ) 〉〉

= C
(

cosh(tk)× (−τ) + sinh(tk)
)

×
∞
∑

n=0

(−τ)n ×
√
n + 1 |n, n+ 1〉

〈〈 plugging in τ = tanh(tk), hence cosh(tk)× (−τ) + sinh(tk) = 0 〉〉

= C × 0×
∑

· · · = 0.

(42)

In exactly the same way we also have b̂−k |Ψ〉 = 0.

To generalize the construction of the |Ψ〉 state to the entire Fock space, we simply take

a tensor product over all the distinct (+k,−k) pairs. Thus, the state

|ground〉 =
⊗

(+k,−k) pairs

|Ψ〉k (43)

should be annihilated by all the b̂k operators, b̂k |ground〉 = 0.

To rewrite this state in the specific form (20), we simply note that
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|ground〉 =
⊗

(+k,−k) pairs

|Ψ〉k =





∏

(+k,−k) pairs

1

cosh(tk)
exp
(

− tanh(tk)â
†
k
â†−k

)



 |BEC〉

= Cnet × exp



−
∑

(+k,−k) pairs

tanh(k)â†kâ
†
−k



 |BEC〉 ,

= Cnet × exp

(

−1

2

∑

k

tanh(k)â†
k
â†−k

)

|BEC〉

= exp

(

−1

2

∑

k

tanh(k)â†
k
â†−k

constant

)

|BEC〉 ,

(44)

quod erat demonstrandum.

If you want the specific normalization constant inside the exponential, note the Cnet

factor on the second and third lines of eq. (44),

Cnet =
∏

(+k,−k) pairs

1

cosh(tk)
= exp

(

−1

2

∑

k

log(cosh(tk))

)

, (45)

hence

|ground〉 = exp

(

−1

2

∑

k

(

tanh(k)â†
k
â†−k

+ log(cosh(tk))
)

)

|BEC〉 . (46)

Lemma 4: the net momentum operator

P̂net =
∑

k

kâ†kâk . (47)

Using eqs. (33) and (34) from the proof of Lemma 2 and t−k = tk, we immediately see that

b̂†
k
b̂
k
− b̂†−k

b̂−k
=
(

cosh2(tk)− sinh2(tk) = 1
)

× (â†
k
â
k
− â†−k

â−k
). (48)
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Consequently, for the momentum operator (47) we have

P̂ =
∑

k

k× â†
k
â
k

=
∑

k

(−k)× â†−k
â−k

=
1

2

∑

k

k× (â†kâk − â†−kâ−k)

=
1

2

∑

k

k× (b̂†kb̂k − b̂†−kb̂−k)

=
∑

k

k× b̂†
k
b̂
k
.

(49)

Quod erat demonstrandum.

Lemma 5: the finite-range potential V2(x− y) for the helium atoms. Consider the net

potential operator

V̂ =
1

2

∫

d3x

∫

d3y V2(x− y)× ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x). (50)

In terms of the shifted fields δψ̂(x) = ψ̂(x)−√
n̄s and δψ̂†(x) = ψ̂†(x)−√

n̄s, we have

ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) = n̄2s + n̄
3/2
s

(

δψ̂†(x) + δψ̂†(y) + δψ̂(x) + δψ̂(y)
)

+ n̄s

(

δψ̂†(x)δψ̂(x) + δψ̂†(y)δψ̂(y)
)

+ n̄s

(

δψ̂†(x)δψ̂(y) + δψ̂†(y)δψ̂(x)
)

+ n̄s

(

δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ cubic + quartic.

(51)

The terms on the first two lines here depend only on the x or only on the y, so when we plug

them into the potential operator (50), we may immediately integrate over the other space

position to obtain

[@any fixed y]

∫

d3xV2(x− y) = [@any fixed x]

∫

d3y V2(x− y) = W (0). (52)

Consequently, integrating over the expansion (51) in the context of the potential (50) and
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making use of the x ↔ y symmetry, we obtain

V̂ = n̄s ×W (0)×
∫

d3x
(

1
2 n̄s +

√
n̄s
(

δψ̂†(x) + δψ̂(x)
)

+ δψ̂†(x)δψ̂(x)
)

+
n̄2
2

×
∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ cubic + quartic.
(53)

Now consider the other non-derivative term in the Helium Hamiltonian

Ĥnet = K̂ + V̂ − µN̂, (54)

namely the chemical potential term,

−µN̂ = −µ
∫

d3x ψ̂†(x)ψ̂(x)

= −µ
∫

d3x
(

n̄s +
√
n̄s
(

δψ̂(x) + δψ̂†(x)
)

+ δψ̂†(x)δψ̂(x)
)

(55)

If we generalize the µ = λn̄s formula of the Landau–Ginzburg theory to the

µ = W (0)× n̄s , (56)

then the chemical potential term (55) cancels the top line of the two-body potential (53)

(except for the constant part), hence

V̂ − µN̂ =
n̄2
2

∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

+ constant + cubic + quartic.
(57)

Thus altogether,

Ĥ = constant + Ĥfree + Ĥinteractions (58)

where

Ĥfree =
1

2m

∫

d3x∇δψ̂†(x) · ∇δψ̂(x)

+
n̄2
2

∫

d3x

∫

d3y V2(x− y)×
(

2δψ̂†(x)δψ̂(y) + δψ̂†(x)δψ̂†(y) + δψ̂(y)δψ̂(x)
)

.

(59)

This completes the proof of the first part of the Lemma 5 — the top two lines of the eq. (26).
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To prove the second part of the Lemma (the bottom line of eq. (26)) we simply Fourier

transform from the shifted creation and annihilation fields to the creation and annihilation

operators for modes k 6= 0,

δψ̂†(x) = L−3/2
∑

k 6=0

e+ikxâ†
k
, δψ̂(x) = L−3/2

∑

k 6=0

e−ikxâ
k
. (60)

Consequently,

∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂(y) =

=

∫

d3x

∫

d3y V2(x− y)× L−3
∑

k,k′

eikx−ik′y × â†kâk′

=
∑

k,k′

â†
k
â
k′ × L−3

∫

d3x

∫

d3y V2(x− y)× eikx−ik′y

(61)

where

L−3

∫

d3x

∫

d3y V2(x− y)× eikx−ik′y =

= L−3

∫

d3y

∫

d3(z = x− y) V2(z)× eik(y+z)−ik′y

=

∫

d3z V2(z)e
ikz × L−3

∫

box

d3y eiky−ik′y

= W (k)× δk,k′ ,

(62)

hence
∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂(y) =
∑

k

W (k)× â†
k
â
k
. (63)

In the same way we obtain

∫

d3x

∫

d3y V2(x− y)× δψ̂†(x)δψ̂†(y) =

=

∫

d3x

∫

d3y V2(x− y)× L−3
∑

k,k′

eikx−ik′y × â†
k
â†−k

=
∑

k

W (k)× â†kâ
†
−k

(64)
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and likewise

∫

d3x

∫

d3y V2(x− y)× δψ̂(x)δψ̂(y) =
∑

k

W (k)× â−k
â
k
. (65)

Combining all these formulae with the gradient term in the Hamiltonian (59),

K̂ =
1

2m

∫

d3x∇ψ† · ∇ψ =
1

2m

∫

d3x∇δψ† · ∇δψ =
∑

k

k2

2m
â†kâk , (66)

we finally assemble all quadratic terms to

Ĥfree =
∑

k

((

k2

2m
+ W (k)n̄s

)

â†
k
â
k
+ 1

2W (k)n̄s
(

â†
k
â†−k

+ â−k
â
k

)

)

. (67)

Quod erat demonstrandum.
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