PHY-396 L. Problem set #12. Due January 30, 2019.

1. Verify the integrals used by the Feynman’s parameter trick and its generalizations:
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2. In class, we have evaluated the one-loop diagram

(1)

using the hard-edge cutoff as an ultraviolet regulator. Your task is to evaluate the same

diagram using two other UV regulators: (1) Pauli-Villars, and (2) higher derivatives.



Show that all 3 regulators yield similar amplitudes of the form
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M(diagram (1)) = 392 (logm + C — J(t/m*) + neghg1ble) (2)

where
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‘negligible’ stands for terms that vanish as negative powers of the cutoff scale A for A — oo,

and C' is an O(1) numeric constant that depends on the particular UV regulator:

CYhaurd edge 7£ C(Paili Villars 7£ CYhigher derivative - <4>

Fortunately, this regulator dependence can be canceled by adjusting the cutoff scale pa-

rameter A for each regulator: Let
A x 9 = ARy x eV = A% x O, (5)

then all 3 regulators would yield exactly the same loop amplitude (2).

Note: the dimensional regularization also yields exactly the same amplitude (2), provided

we identify the UV cutoff scale as
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Ain = u?x -z 6
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and then set
A2DR % eCDR — AI2-IE X eCHE — AI%V % eCPV — AI2-IE > €CHD <7>

for a suitable O(1) numeric constant Cpg.



Hint: for the higher-derivative regulator, approximate the modified propagator as
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where the second factor differs from 1 only for very large momenta. Consequently, for the
two propagators in the loop we may further approximate
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