PHY-396 K. Problem set #14. Due February 14, 2017.

1. Let’s start with the Yukawa theory of a Dirac fermion field ¥ coupled to a real scalar field

® according to
L=Tigd—mp¥ + 1(0,0)? — im20? + gV, (1)

For Mg > 2My, the scalar particle becomes unstable: it decays into a fermion and an

antifermion, S — f + f.

(a) Calculate the tree-level decay rate I'(S — f + f).

(b) In class, we have calculated
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Show that for p?> > 4mfc, this Y¢(p?) has an imaginary part and calculate it for
p? = M? +ie.

Note: at this level, you may neglect the difference between m?are and M?hysml.

(c) Verify that

Imz(11)loop<p2 _ Ms2 +i€) = _]\[gI‘tree(S_> f_|_f) (4)

and explain this relation in terms of the optical theorem.



2. And now, a harder exercise about the scalar A\¢* theory. As discussed in class, in this

theory the field strength renormalization begins at the two-loop level. Specifically, the

leading contribution to the d¥(p?)/dp* — and hence to the Z — 1 — comes from the

two-loop 1PI diagram

Your task is to evaluate this contribution.

(a)

First, write the ¥(p?) from the diagram (5) as an integral over two independent loop

momenta, say ¢} and ¢4, then use the Feynman’s parameter trick — cf. eq. (F.d) of

the homework set T — to write the product of three propagators as

///dfdndé5(€+n+C—l)% (6)

where D is a quadratic polynomial of the momenta q1, ¢2, p, and mass m with Feynman-

paramater dependent coefficients.
Warning: Do not set p?> = m? but keep p an independent variable.

Next, change the independent loop momentum variables from ¢; and ¢2 to k1 = ¢q1 +

something X g2 4+ something x p and ks = g2 + something x p to give D a simpler form

D =axk?+ xki+ yxp2—m?+i0 (7)
for some (£, n, ()—dependent coefficients «, 3,7, for example
&n+&C+n¢ &ng
o = €+C ) 6 = ’ v = : 8
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Make sure the momentum shift has unit Jacobian d(q1, ¢2)/9(k1, k2) = 1.


http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/hw12.pdf

(c) Express the derivative d¥(p?)/dp? in terms of
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Note that although this momentum integral diverges as k12 — oo, the divergence is

logarithmic rather than quadratic.

(d) To evaluate the momentum integral (9), Wick-rotate the momenta k; and kg to the
Euclidean space, and then use the dimensional regularization. Here are some useful

formulee for this calculation:

% = 7dtt3 e~ AL, (10)
b
/ % e~ = (aget) "7, (11)
T(26)X¢ = 2% ~ g + MogX + O(e). (12)
(e) Assemble your results as
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(f) Before you evaluate the Feynman parameter integral (13) — which looks like a frightful
mess — make sure it does not introduce its own divergences. That is, without actually

calculating the integrals

B En¢
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make sure that they converge. Pay attentions to the boundaries of the parameter space

and especially to the corners where &, 7 — 0 while { — 1 (or £, — 0, or n,{ — 0).



e This calculation shows that

dX tant
d—p2 — @ + a_ﬁnjte_function(p2) (15)

and hence
S(p?) = (a divergent constant) + (another divergent constant) x p

(16)
+ a_finite_function(p?)

up to the two-loop order. In fact, this behavior persists to all loops, so all the diver-

gences of ¥(p?) may be canceled with just two counterterms, 8™ and §% x p.

For the purposes of calculating the field strength renormalization factor
]!
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we need to evaluate the derivative dX /dp2 at p? = Mgh — the physical mass? of the
scalar particle. However, to the leading non-trivial order in A we may approximate M. gh ~
m%are and set p? = m? in the Feynman-parameter integral (13). Consequently, the second

integral (14) becomes a little simpler, although it is still a frigtful mess.

x Optional exercise: Evaluate the integrals (14) for p> = m? and show that

///dgdnd¢5(5+n+g—1)x( IS - % (18)
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Do not try to do this calculation by hand — it would take way too much time. Instead,
use Mathematica or equivalent software. To help it along, replace the (£, 7, ) variables
with (z,w) according to

E=wxz, n=wx(l-x), =1—w,
11

///dgdndg5§+n+c—1 = [dz [dww,

0 0

(19)

then integrate over w first and over x second.



Alternatively, you may evaluate the integrals like this numerically. In this case, don’t
bother changing variables, just use a simple 2D grid spanning a triangle defined by
E+n+C=1,&n,¢ > 0; modern computers can sum up a billion grid points in less

than a minute. But watch out for singularities at the corners of the triangle.

(g) Finally, assemble your results and calculate the field strength renormalization factor

Z to the two-loop order.



