
PHY–396 K. Problem set #20. Due April 10, 2019.

• The first two problems of this homework set are about non-abelian gauge theories while

the last two problems are about path integrals in quantum mechanics.

? In my notations, the Aµ and their components Aaµ are the canonically normalized vector

fields, while the Aµ = gAµ and the Aaµ = gAaµ are normalized by the symmetry action.

Likewise, the tension fields Fµν and their components F aµν are canonically normalized while

the Fµν = gFµν and the Faµν = gF aµν are normalized by the symmetry action.

1. The first problem is about SU(N) local symmetry and its most commonly used multiplets

— the fundamental, the antifundamental, and the adjoint.

• The fundamental multiplet is a set of of N fields (complex scalars or Dirac fermions)

which transform as a column vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) = U ij(x)Ψj(x), i, j = 1, 2, . . . , N (1)

where U(x) is an x–dependent unitary N ×N matrix, detU(x) ≡ 1.

• The antifundamental multiplet is the hermitian conjugate of the fundamental multi-

plet — a set of N conjugate fields Ψ∗i (x) arranged in a raw vector Ψ†(x) and trans-

forming according to

Ψ′†(x) = Ψ†(x)U †(x) i. e. Ψ′i(x) =
(
U∗(x)

) j
i

Ψj(x). (2)

Note: for N = 2 the antifundamental doublet is equivalent to the fundamental doublet

thanks to τ2U
∗τ2 = U . But for N ≥ 3, the fundamental and the antifundamental

multiplets are not equivalent to each other.

• The adjoint multiplet of SU(N) is a set of N2 − 1 real fields Φa(x) — one field for

each generator of the group — combined into a traceless hermitian N ×N matrix

Φ(x) =
∑
a

Φa(x)× λa

2
(3)
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which transforms according to

Φ′(x) = U(x)Φ(x)U †(x). (4)

Note that this transformation law preserves the Φ† = Φ and tr(Φ) = 0 conditions.

The covariant derivatives Dµ act on these kinds of multiplets according to

DµΨ(x) = ∂µΨ(x) + iAµ(x)Ψ(x), (5)

DµΨ†(x) = ∂µΨ†(x) − iΨ†(x)Aµ(x), (6)

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x).(7)

In class we checked that the derivatives (5) are indeed covariant.

(a) Verify the covariance of the derivatives (6) and (7) under finite local symmetries U(x).

(b) Verify the Leibniz rule for the covariant derivatives of matrix products. Let Φ(x) and

Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ†(x) is its

hermitian conjugate (a row vector of Ψ∗i ). Show that

Dµ(ΦΞ) = (DµΦ)Ξ + Φ(DµΞ),

Dµ(ΦΨ) = (DµΦ)Ψ + Φ(DµΨ),

Dµ(Ψ†Ξ) = (DµΨ†)Ξ + Ψ†(DµΞ).

(8)

(c) Show that for an adjoint multiplet Φ(x),

[Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)] = ig[Fµν(x),Φ(x)] (9)

or in components [Dµ, Dν ]Φa(x) = −gfabcF bµν(x)Φc(x).

In class, I have argued (using covariant derivatives) that the tension fields Fµν(x) them-

selves transform according to eq. (4). In other words, the Faµν(x) form an adjoint multiplet

of the SU(N) symmetry group.

(d) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the definition

Fµν
def
= ∂µAν − ∂µAν + i[Aµ,Aν ] and from the non-abelian gauge transform formula

for the Aµ fields.
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(e) Verify the Bianchi identity for the non-abelian tension fields Fµν(x):

DλFµν + DµFνλ + DνFλµ = 0. (10)

Note the covariant derivatives in this equation.

Finally, consider the SU(N) Yang–Mills theory — the non-abelian gauge theory that does

not have any fields except Aa(x) and Fa(x); its Lagrangian is

LYM = − 1

2g2
tr
(
FµνFµν

)
= −1

4
F aµνF

aµν . (11)

(f) Show that the Euler–Lagrange field equations for the Yang–Mills theory can be written

in covariant form as DµFµν = 0.

Hint: first show that for an infinitesimal variation δAµ(x) of the non-abelian gauge

fields, the tension fields vary according to δFµν(x) = DµδAν(x)−DνδAµ(x).

2. Continuing the previous problem, consider an SU(N) gauge theory in which N2−1 vector

fields Aaµ(x) interact with some “matter” fields φα(x),

L = − 1

2g2
tr
(
FµνFµν

)
+ Lmat(φ,Dµφ). (12)

For the moment, let me keep the matter fields completely generic — they can be scalars,

or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)

symmetry as long as such multiplet is complete and non-trivial. All we need to know right

now is that there are well-defined covariant derivatives Dµφ that depend on the gauge

fields Aaµ, which give rise to the currents

Jaµ = −∂Lmat

∂Aaµ
. (13)

Collectively, these N2− 1 currents should form an adjoint multiplet Jµ =
∑

a(
1
2λ

a)Jaµ of

the SU(N) symmetry.
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(a) Show that in this theory the equation of motion for the Aaµ fields are DµF
aµν = Jaν

and that consistency of these equations requires the currents to be covariantly con-

served,

DµJ
µ = ∂µJ

µ + ig[Aµ, J
µ] = 0, (14)

or in components,

DµJ
µa = ∂µJ

aµ − gfabcAbµJ
cµ = 0. (15)

Note: a covariantly conserved current does not lead to a conserved charge,

(d/dt)
∫
d3x Ja0(x, t) 6= 0!

Now consider a simple example of matter fields — a fundamental multiplet Ψ(x) of N

Dirac fermions Ψi(x), with a Lagrangian

Lmat = Ψ
(
iγµDµ − m)Ψ, Lnet = Lmat −

1

2g2
tr
(
FµνFµν

)
. (16)

(b) Derive the SU(N) currents Jaµ for these fermions and verify that under the SU(N)

symmetries they transform covariantly into each other as members of an adjoint mul-

tiplet. That is, the N ×N matrix Jµ =
∑

a(
1
2λ

a)Jaµ transforms according to eq. (4).

Hint: for any complex N–vectors ξi and ηj ,

∑
a

(
η†λaξ

)
×
(
λa
)i
j

= 2 η∗j ξ
i − 2

N

(
η†ξ
)
×δij .. (17)

(c) Finally, verify the covariant conservation DµJ
aµ = 0 of these currents when the

fermionic fields Ψi(x) and Ψi(x) obey their equations of motion.

3. Next, a reading assignment: my notes about properly discretized path integral for the

harmonic oscillator.
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4. Finally, a simple exercise in using path integrals. Consider a 1D particle living on a circle

of radius R, or equivalently a 1D particle in a box of length L = 2πR with periodic

boundary conditions where moving past the x = L point brings you back to x = 0. In

other words, the particle’s position x(t) is defined modulo L.

The particle has no potential energy, only the non-relativistic kinetic energy p2/2M .

(a) As a particle moves from some point x1 (mod L) at time t1 = 0 to some other point

x2 (mod L) at time t2 = T , it may travel directly from x1 to x2, or it may take a

few turns around the circle before ending at the x2. Show that the space of all such

paths on a circle is isomorphic to the space of all paths on an infinite line which begin

at fixed x1 at time t1 and end at time t2 at any one of the points x′2 = x2 +nL where

n = 0,±1,±2, . . . is any whole number.

Then use path integrals to relate the evolution kernels for the circle and for the infinite

line (over the same time interval t2 − t1 = T ) as

Ucircle(x2;x1) =
+∞∑

n=−∞
Uline(x2 + nL;x1). (18)

The next question uses Poisson’s resummation formula: If a function F (n) of integer n

can be analytically continued to a function F (ν) of arbitrary real ν, then

+∞∑
n=−∞

F (n) =

∫
dν F (ν)×

+∞∑
n=−∞

δ(ν − n) =
+∞∑
`=−∞

∫
dν F (ν)× e2πi`ν . (19)

(b) The free particle living on an infinite 1D line has evolution kernel

Uline(x2;x1) =

√
M

2πih̄T
× exp

(
+
iM(x2 − x1)2

2h̄T

)
. (20)

Plug this free kernel into eq. (18) and use Poisson’s formula to sum over n.
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(c) Verify that the resulting evolution kernel for the particle one the circle agrees with

the usual QM formula

Ubox(x2;x1) =
∑
p

L−1/2eipx2/h̄ × e−iT (p2/2M)/h̄ × L−1/2e−ipx1/h̄ (21)

where p takes circle-quantized values

p =
2πh̄

L
× integer. (22)
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