
PHY–396 L. Problem set #22. Due April 24, 2019.

1. Let’s start with a bit of group theory. Consider a generic simple non-abelian compact Lie

group G and its generators T a. For a suitable normalization of the generators,

tr(r)(T
aT b) ≡ tr

(

T a
(r)T

b
(r)

)

= R(r)δab (1)

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it does

not matter — and T a
(r) is the matrix representing the generator T a in that multiplet. The

coefficient R(r) in eq. (1) depends on the multiplet (r) but it’s the same for all generators

T a and T b. The R(r) is called the index of the multiplet (r).

The (quadratic) Casimir operator C2 =
∑

a T
aT a commutes with all the generators,

∀b, [C2, T
b] = 0. Consequently, when we restrict this operator to any irreducible mul-

tiplet (r) of the group G, it becomes a unit matrix times some number C(r). In other

words,

for an irreducible (r),
∑

a

T a
(r)T

a
(r) = C(r)× 1(r) . (2)

For example, for the isospin group SU(2), the Casimir operator is C2 = ~I2, the irreducible

multiplets have definite isospin I = 0, 12 , 1,
3
2 , 2, . . ., and C(I) = I(I + 1).

(a) Show that for any irreducible multiplet (r),

R(r)

C(r)
=

dim(r)

dim(G)
. (3)

In particular, for the SU(2) group, this formula gives R(I) = 1
3I(I + 1)(2I + 1).

(b) Suppose the first three generators T 1, T 2, and T 3 of G generate an SU(2) subgroup,

thus

[T 1, T 2] = iT 3, [T 2, T 3] = iT 1, [T 3, T 1] = iT 2. (4)

Show that if a multiplet (r) of G decomposes into several SU(2) multiplets of isospins
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I1, I2, . . . , In, then

R(r) =
n
∑

i=1

1
3Ii(Ii + 1)(2Ii + 1). (5)

(c) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

only on the first two components of a complex N -vector. This complex N -vector is

called the fundamental multiplet (of the SU(N)) and denoted (N) or N. As far as the

SU(2) subgroup is concerned, (N) comprises one doublet and N − 2 singlets, hence

R(N) =
1

2
and C(N) =

N2 − 1

2N
. (6)

Show that the adjoint multiplet of the SU(N) decomposes into one SU(2) triplet,

2(N − 2) doublets, and (N − 2)2 singlets, therefore

R(adj) = C(adj) ≡ C(G) = N. (7)

Hint: (N)× (N) = (adj) + (1).

(d) The symmetric and the anti-symmetric 2–index tensors form irreducible multiplets of

the SU(N) group. Find out the decomposition of these multiplets under the SU(2) ⊂

SU(N) and calculate their respective indices R and Casimirs C.

2. Next, let’s apply this group theory to physics. Consider quark-antiquark pair production

in QCD, specifically uū → dd̄. There is only one tree diagram contributing to this process,

u ū

d d̄

(8)

Evaluate this diagram, then sum/average the |M|2 over both spins and colors of the fi-

nal/initial particles to calculate the total cross section. For simplicity, you may neglect the

quark masses.
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Note that the diagram (8) looks exactly like the QED pair production process e−e+ →

virtual γ → µ−µ+, so you can re-use the QED formula for summing/averaging over the

spins, cf. my notes on Dirac traceology from the Fall semester, page 11. But in QCD, you

should also sum/average over the colors of all the quarks, and that’s the whole point of

this exercise.

3. For another exercise of group theory in gauge theories, let’s go back to scalar QCD from

problem 2 of the previous homework set. Again, we consider tree-level annohilation of a

scalar ‘quark’ Φi and an ‘antiquark’ Φ∗

j into a pair of gauge bosons with adjoint colors

a and b. But this time, we focus on the group theory and on the physical cross-sections

rather than the Ward identities.

(a) Take the annihilation amplitude from part (b) of problem (21.1), focus on its color

dependence, and rewrite it in the form

M(j + i → a + b) = F × {T a, T b}ij + iG× [T a, T b]ij (9)

where F and G are some functions of all the momenta and of the two vectors’ polar-

izations. Give explicit formulae for F and G.

(b) Next, let us sum the |M|2 over the gauge boson’s colors and average over the scalars’

colors. Show that

1

dim2(r)

∑

ij

∑

ab

|M|2 =
C(r)

dim(r)
×
(

(

4C(r)−C(adj)
)

×|F |2 + C(adj)×|G|2
)

. (10)

In particular, for scalars in the fundamental representation of the SU(N) gauge group,

1

N2

∑

ij

∑

ab

|M|2 =
N2 − 1

2N2

(

N2 − 2

N
× |F |2 + N × |G|2

)

. (11)

(c) Evaluate F and G in the center of mass frame, where the vector particles’ polarizations

e
µ
1,2 = (0, e1,2) are purely spatial and transverse to the vectors’ momenta ±k. For

simplicity, use planar rather than circular polarizations.

(d) Assemble your results and calculate the (polarized, partial) cross-section for the anni-

hilation process.
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4. Finally, let’s evaluate a few one-loop diagrams. In class, I calculated the (infinite parts of

the) δ2 and δ1 counterterms for the quarks. Your task is to calculate the analogous δ
(gh)
2

and δ
(gh)
1 counterterms for the ghosts fields.

(a) Draw one-loop diagrams whose divergences are cancelled by the respective conterterms

δ
(gh)
2 and δ

(gh)
1 , and calculate the group factors for each diagrams.

(b) Calculate the momentum integrals for the diagrams. Focus on the UV divergences and

ignore the finite parts of the integrals.

(c) Assemble your results and show that the difference δ
(gh)
1 −δ

(gh)
2 for the ghosts is exactly

the same as the δ1 − δ2 difference for the quarks.
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