
PHY–396 L. Problem set #23. Due May 1, 2019.

1. Consider the three gauge couplings of the SU(3)× SU(2)×U(1) Standard Model and their

one-loop beta-functions

β1 loop1 =
b1g
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16π2
, β1 loop2 =

b2g
3
2

16π2
, β1 loop3 =

b3g
3
3

16π2
. (1)

In this exercise, you do not need to calculate these beta-function from scratch by evaluating

the UV divergences of a bunch of loop diagrams. Instead, use eqs. (119) and (121–2) from

my notes on QCD beta-function (pages 24–25).

(a) Calculate the b1, b2, b3 coefficients it for the minimal version of the Standard Model: the

SU(3) × SU(2) × U(1) gauge fields, one Higgs doublet, three families of quarks and

leptons, and nothing else.

? FYI, each family comprises 8 left-handed Weyl fields in the (3,2, y = +1
6) and (1,2, y =

−1
2) multiplets of the gauge symmetry and 7 right-handed Weyl fermions in the (3,1, y =

+2
3), (3,1, y = −1

3), and (1,1, y = −1) multiplets.

(b) Re-calculate the b1, b2, b3 for the MSSM — the Minimal Supersymmetric Standard

Model. FYI, here is complete list of the MSSM fields:

◦ The SU(3)× SU(2)× U(1) gauge fields, same as the non-SUSY SM.

• For each vector field there is a Majorana fermion (gaugino) with similar SU(3)×SU(2)×
U(1) quantum numbers. Altogether, there is an adjoint multiplet of gauginos for each

factor of the gauge symmetry.

◦ 3 families of quarks and leptons, same as the non-SUSY SM.

• For each Weyl fermion — left-handed or right-handed — in these three families, the

MSSM also have a complex scalar field (squark or slepton) with similar SU(3)×SU(2)×
U(1) quantum numbers. Altogether, this makes 45 complex scalar fields in similar

multiplets to the quarks and leptons.

• The Higgs sector of the MSSM comprises two SU(2) doublets of complex scalars accom-

panied by one SU(2) doublet of Dirac fermions (the higgsinos); all these doublets have

y = 1
2 .
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— There are all kinds of Yukawa and φ4 interactions between the MSSM fields, but you do

not need them for the one-loop calculation of the gauge couplings’ beta-functions.

In Grand Unified Theories

α3 = α2 = 5
3α1 = αGUT at the GUT scale. (2)

At lower energy scales E � MGUT the SM couplings are given (lo the leading one-loop

order) by the Georgi–Quinn–Weinberg equations

1
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(3)

(c) Derive these equations from eqs. (1).

(d) The experimental data interpreted in terms of the MS gauge couplings at E = Mtop ≈
173 GeV and translated to the MS give

1

α3(MZ)
≈ 9.23,

1

α2(MZ)
≈ 29.97,

1

α1(MZ)
≈ 97.76. (4)

Check that these couplings are consistent with eqs. (3) for the MSSM but not for the

non-SUSY minimal Standard Model. For the MSSM, calculate the Grand Unification

scale MGUT and the unified gauge coupling αGUT.

Although all the additional particles of the MSSM are heavier than M|rmtop, for this

exercise you should ignore the thresholds due to these masses. Instead, use the b3, b2, b1

coefficients of the massless theory — the minimal SM or the MSSM — for all energies

between the Mtop and the MGUT.

2. Next, a reading assignment: $16.7 of Peskin & Schroeder about the “magnetic anti-screening”

explanation of the asymptotic freedom in QCD.
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3. And another reading assignment: §19.3 of Peskin & Schroeder about the chiral symmetry of

QCD and the pions.

Chapter 19 of Weinberg has a deeper discussion of pions (and Goldstone bosons in general);

you are advised to read it, but not necessarily this week.

4. The pions are pseudo-Goldstone bosons of the spontaneously broken chiral symmetry of

QCD, so they can be created or annihilated by the appropriate axial currents. In particular,

for the charged pions

〈vacuum|Ψdγ
5γαΨu

∣∣π+(p)
〉

= 〈vacuum|Ψuγ
5γαΨd

∣∣π−(p)
〉

= fπ × pα (5)

for fπ ≈ 93 MeV. The fπ is called the pion decay constant because it controls the decay rate

of the charged pions, mostly into muons and neutrinos, π+ → µ+νµ and π− → µ−ν̄µ. In

this exercise, we shall see how this works.

The weak interactions at energies O(Mπ)�MW are governed by the Fermi’s current-current

effective Lagrangian

L = −2
√

2GFJ
+α
L J−Lα (6)

where L±αL = 1
2(J±αV −J

±α
A ) are the left-handed charged currents. In terms of the quark and

lepton fields,

J+α
L = 1

2Ψ(νµ)(1− γ5)γαΨ(µ) + cos θc × 1
2Ψ(u)(1− γ5)γαΨ(d) + · · · ,

J−αL = 1
2Ψ(µ)(1− γ5)γαΨ(νµ) + cos θc × 1

2Ψ(d)(1− γ5)γαΨ(u) + · · · ,
(7)

where the · · · stand for other fermions of the Standard Model, and θc ≈ 13◦ is the Cabibbo

angle. For the pion decay process, the axial part one of the charged currents annihilates the

charged pion according to eq. (6) while the other charged current creates the lepton pair.

(a) Show that the tree-level pion decay amplitude is

M(π+ → µ+νµ) =
Gffπ cos θc√

2
× pα(π)× ū(νµ)(1− γ5)γαv(µ+). (8)

(b) Sum over the fermion spins and calculate the decay rate Γ(π+ → µ+νµ). FYI, fπ ≈
93 MeV, Mπ ≈ 140 MeV, Mµ ≈ 106 MeV, and GF ≈ 1.17 · 10−5 GeV−2.
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(c) The charged pions decay to muons much more often than they decay to electrons,

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

M2
e

M2
µ

(1− (Me/Mπ)2)2

(1− (Mµ/Mπ)2)2
≈ 1.2 · 10−4. (9)

Derive this formula, then explain this preference for the heavier final-state lepton in

terms of mismatch between lepton’s chirality and helicity.
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