Phase Space Factors

For quantum transitions to un-bound states — for example, an atom emitting a photon,
or a radioactive decay, or scattering — which is a kind of unbound — unbound transition,

— the transition rate is given by the Fermi’s golden rule:
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where T’ = ﬁperturbation + higher order corrections, and p is the density of final states,
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For an example, consider an atom emitting a photon of specific polarization A. Using the

large-box normalization for the photon’s states, we have
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The L? factor here cancels against the L~3/2 factor in the matrix element (atom’ + | 7" |atom)
due to the photon’s wave function in the large-box normalization. As to the remaining d2Q7
factor, we should integrate over it to get the total decay rate, or divide by it to get the
partial emission rate dI"/dS) for the photons emitted in a particular direction, thus
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In relativistic normalization of quantum states and matrix elements, there are no L™3/2

factors but instead there are v/2FE factors for each final-state or initial state particle, and



they must be compensated by dividing the density of states p by the [[,(2£;). Also, we
must allow for motion of all the final-state particles (i.e., both the photon and the recoiled
atom) but impose the momentum conservation as a constraint. Thus, for a decay of 1 initial

particle into n final particles,

3/ 3./
b Q;in / (2:)?? 28] / (2':); 28 [P p M) [ (258D (0] 4+ 9, — ),
(6)
where the ¢ function takes care of both momentum conservation and of the denominator
dEy in the density-of-states factor (2). Likewise, the transition rate for a generic 2 — n

scattering process is given by
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In terms of the scattering cross-section o, the rate (7) is I' = ¢ x flux of initial particles. In
the large-box normalization the flux is L=3|vy — v/, so in the continuum normalization it’s
simply the relative speed |vi; — va|. Consequently, the total scattering cross-section is given

by

Otot — |<p/177p;1|'/\/l|p17p2>‘2x

! i /dg_P
4EEolvi — va| J (2m)3 2E] (27)3 2E],

x (2nH6W (p + -+ pl, — p1 — p2).
(8)

In particle physics, all the factors in eqs (6) or (8) besides the matrix elements — as well as

the integrals over such factors — are collectively called the phase space factors.

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements
(final| M [initial) are Lorentz invariant, and so are all the integrals over the final-particles’
momenta and the d-functions. The only non-invariant factor in the decay-rate formula (6)

is the pre-integral 1/Fiyi, hence the decay rate of a moving particle is
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where M /FE is precisely the time dilation factor in the moving frame.



As to the scattering cross-section, it should be invariant under Lorentz boosts along the
initial axis of scattering, thus the same cross-section in any frame where p; || p2. This
includes the lab frame where one of the two particles is initially at rest, the center-of-mass
frame where p1 + p2 = 0, and any other frame where the two particles collide head-on. And

indeed, the pre-integral factor in eq. (8) for the cross-section
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is invariant under Lorentz boosts along the scattering axis.
Let’s simplify eq. (8) for a 2 particle — 2 particle scattering process in the center-of-mass

frame where p; + p2 = 0. In this frame, the pre-exponential factor (10) becomes
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while the remaining phase space factors amount to
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On the last 3 lines here E| = E|(p}) = 1/p’2 + mZ while £}, = E4(p) = —p}) = \/p? + m%.

Consequently,
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and therefore
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Including the pre-integral factor (11), we arrive at the net phase space factor
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The matrix element M for the scattering should be put inside the direction-angle integral

in this phase-space formula. Thus, the total scattering cross-section is
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while the partial cross-section for scattering in a particular direction is
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Note: the total cross-section is the same in frames where the initial momenta are collinear,
but in the partial cross-section, d€)2 depends on the frame of reference, so eq. (18) applies
only in the center-of mass frame. Also, the F¢y factor in denominators of both formulae

stands for the net energy in the center-of-mass frame. In frame-independent terms,
Ep = (1 +p2)° = (0 +15)° = s. (19)

Finally, let me write down the phase-space factor for a 2-body decay (1 particle —
2 particles) in the rest frame of the initial particle. The under-the-integral factors for such
a decay are the same as in eq. (15) for a 2 — 2 scattering, but the pre-integral factor is

1/2Mip;t, instead of the (11), thus
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