
QCD Feynman Rules

The classical chromodynamics has a fairly simple Lagrangian

L = LYang−Mills + Lquarks = −1
4F

a
µνF

a µν +
∑

f

Ψif (i6D +mf )Ψ
if (1)

where i denotes the color of a quark and f its flavor. In my notations, I follows the usual

summation convention for the Lorentz or color indices, — and the Dirac indices are implicit

altogether; but the sum over the quark flavors is explicit since the mass mf depends on the

flavor. OOH, the covariant derivatives Dµ are flavor-blind, DµΨ
if = ∂µΨ

if + igAa
µ(t

a)ijΨ
jf

where ta are matrices representing the gauge group generators in the quark representation; in

QCD the quarks belong to the fundamental 3 representation of the SU(3)C so ta are 1
2 × Gell-

Mann matrices λa.

The Quantum ChromoDynamics is more complicated, even at the Lagrangian level: including

the gauge-fixing and the ghost terms as well as the counterterms, we have

L = −1

4
(F a

µν)
2 − 1

2ξ
(∂µA

µ)2 + ∂µc̄
aDµca +

∑

f

Ψif (i6D +mf )Ψ
if

− δ3
4
(∂µA

a
ν − ∂νA

a
µ)

2 + gδ
(3g)
1 fabcAb

µA
c
ν∂µA

aν − g2δ
(4g)
1

4
(fabcAb

µA
c
ν)

2

+ δ
(gh)
2 ∂µc̄

a∂µca − gδ
(gh)
1 fabc∂µc̄

aAbµcc

+
∑

f

Ψif

(

iδ
(qf )
2 6∂ + δ

(qf )
m − gδ

(qf )
1 6Aata

)

Ψif .

(2)

On the last line here, the quark-related counterterms δ
(qf )
2 , δ

(qf )
1 , and δ

(qf )
m could be flavor-

dependent due to flavor-dependence of the quark mass.

QCD Feynman rules follow from expanding the Lagrangian (2) into the free quadratic terms

and the interaction terms (cubic, quartic, and all the counterterms). Thus we have:

— Gluon propagator

a

µ

b

ν
=

−iδab

k2 + i0

(

gµν + (ξ − 1)
kµkν

k2 + i0

)

. (3)
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— Quark propagator

f

i

f ′

j
=

iδijδ
f
f ′

6p−mf + i0
. (4)

— Ghost propagator

a b
=

iδab

k2 + i0
. (5)

• Three-gluon vertex

a
α

k1

b
β

k2

c
γ

k3

= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

. (6)

• Four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (7)

• Quark-gluon vertex

a

µ

i f

j f ′

= −igγµ × δf
′

f × (ta)ji . (8)
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• Ghost-gluon vertex

a

µ

b

c

p

p′
= +gfabcp′µ. (9)

In addition, the renormalized theory has a whole bunch of the counterterm vertices:

∗ Two-gluon counterterm vertex

a
µ

b
ν

= −iδ3δ
ab
(

k2gµν − kµkν
)

. (10)

∗ Three-gluon counterterm vertex

a
α

k1

b
β

k2

c
γ

k3

= −gδ
(3g)
1 ×fabc

[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

.

(11)

• Four-gluon counterterm vertex

a
α b

β

c
γd

δ

= −ig2δ
(4g)
1 ×







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (12)

∗ Two-quark counterterm vertex

f

i
f ′

j
= δf

′

f δji ×
(

iδ
(qf )
m − iδ

(qf )
2 ×6p

)

. (13)
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∗ Quark-gluon counterterm vertex

a

µ

i f

j f ′

= −igδ
(qf )
1 δf

′

f × γµ × (ta)ji . (14)

∗ Two ghost counterterm vertex

a b = δab × iδ
(gh)
2 × k2. (15)

∗ Ghost-gluon counterterm vertex

a

µ

b

c

p

p′
= +gδ

(gh)
1 × fabcp′µ. (16)

⋆ Remember that the ghost fields are fermionic, so each closed loop of ghost propagators

carries a minus sign.

⋆ The flavor f remains constant along any quark line, open or closed. For an open line,

f matches both the incoming and the outgoing quarks (or antiquarks); for closed quark

loops, we sum over all the flavors.

⋆ The color of a quark changes from propagator to propagator since the quark-quark-gluon

vertices carry the (ta)ji factors. In matrix notations, the ta generators should be multiplied
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right-to-left in the order of arrows on the quark line, for example

c b a

j i

=⇒
(

tctbta
)j

i
× other factors.

For the closed quark lines, one starts at an arbitrary vertex, multiplies all the genera-

tors right-to-left in the order of the arrows, than takes the trace over the color indices,

tr(· · · tctbta).

Ward Identities

QCD has weaker Ward identities than QED. In particular, consider the on-shell scattering

amplitudes involving the longitudinally polarized gluons. When one gluon is longitudinal and all

other gluons are transverse, the amplitude vanishes. But when two or more gluons are longitudi-

nal, the amplitude does not vanish; instead, it is related to the amplitudes involving the external

ghosts instead of the longitudinal gluons.

As an example, consider the tree level annihilation of a quark and an antiquark into a pair

of gluons, qq̄ → gg. In QED there are two tree diagrams for the e−e+ → γγ annihilation, but in

QCD there are three diagrams:

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

q1

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

q2

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

(k1 + k2, λ, c)

(17)
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According to the QCD Feynman rules, these diagrams evaluate to

iM1 = v̄(p2) (−igγνe∗2ν)
i

6q1 −m
(−igγµe∗1µ) u(p1)×

(

tbta
)j

i
, (18)

iM2 = v̄(p2) (−igγµe∗1µ)
i

6q2 −m
(−igγνe∗2ν) u(p1)×

(

tatb
)j

i
, (19)

iM3 = v̄(p2) (−igγλ) u(p1)× (tc)ji ×
−i

(k1 + k2)2
×

× (−g)fabc
[

gµν(−k1 + k2)
λ + gνλ(−k2 − (k1 + k2))

µ + gλµ((k1 + k2) + k1)
ν
]

〈〈 the 3 gluon vertex; the unusual signs are due to momenta’s directions 〉〉

〈〈 the k1 and k2 are outgoing while the k3 = k1 + k2 is incoming 〉〉

× e∗1µe
∗

2ν , (20)

Mnet
tree = M1 + M2 + M3 . (21)

Clearly, each term in the net amplitude is O(g2) and each term includes the polarization vectors

for the two gluons, thus

M = e∗1µe
∗

2ν ×Mµν . (22)

So let us check the Ward identity k1µ ×Mµν ??
= 0.

For the first diagram’s amplitude we have

k1µ ×Mµν
1 = −g2

(

tbta
)j

i
× v̄γν

1

6q1 −m
6k1u. (23)

In the second factor here, q1 = p1 − k1, hence

1

6q1 −m
6k1 =

1

6q1 −m
(6p1−6q1) = −1 +

1

6q1 −m
(6p1 −m), (24)

which for the on-shell quark gives

1

6q1 −m
6k1 u(p1) = −u(p1) +

1

6q1 −m
(6p1 −m)u(p1) = −u(p1) + 0 (25)

because (6p1 −m)u(p1) = 0. Thus,

k1µ ×Mµν
1 = +g2

(

tbta
)j

i
× v̄(p2)γ

νu(p1). (26)
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Likewise, for the second diagram

k1µ ×Mµν
2 = −g2

(

tbta
)j

i
× v̄ 6k1

1

6q2 −m
γνu. (27)

where in the second factor

q2 = k1 − p2 =⇒ 6k1
1

6q2 −m
= 1 − (6p2 +m)

1

6q2 −m
=⇒ v(p2) 6k1

1

6q2 −m
= +v(p2) − 0,

(28)

thus

k1µ ×Mµν
2 = −g2

(

tatb
)j

i
× v̄(p2)γ

νu(p1). (29)

In QED, k1µ ×Mµν
1 and k1µ ×Mµν

2 would have canceled each other, but in QCD eqs. (26)

and (29) carry different color-dependent factors. So instead of cancellation, we have

k1µ ×Mµν
1+2 = g2v̄γνu×

(

tbta − tatb
)j

i
= g2v̄γνu×−ifabc

(

tc
)j

i
. (30)

But the net color-dependent factor is similar to the third amplitude, so there is a hope that the

Ward identity might work when all three diagrams are put together.

For the third diagram we have

k1µ ×Mµν
3 = −ig2fabc

(

tc
)j

i
× v̄γλu× 1

(k1 + k2)2
×

× k1µ ×
[

gµν(k2 − k1)
λ + gνλ(−k1 − 2k2)

µ + gλµ(2k1 + k2)
ν
]

,

(31)

where on the second line

k1µ × [· · ·] = kν1 (k2 − k1)
λ + gνλ(−k21 − 2k1k2) + kλ1 (2k1 + k2)

ν

= gλν
(

−(k1 + k2)
2 + k22

)

+
[

(2− 1)kλ1k
ν
1 + kλ1k

ν
2 + kλ2k

ν
1

]

〈〈 on shell 〉〉

= −gλν(k1 + k2)
2 + (k1 + k2)

λ(k1 + k2)
ν − kλ2k

ν
2 .

(32)

Plugging the three terms here back into eq. (31), we obtain

k1µ ×Mµν
3 = k1µ ×Mµν

3,a + k1µ ×Mµν
3.b + k1µ ×Mµν

3,c (33)

where

k1µ ×Mµν
3,a = +ig2fabc

(

tc
)j

i
× v̄(p2)γ

νu(p1), (34)
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k1µ ×Mµν
3,b = −ig2fabc

(

tc
)j

i
× v̄(p2)(6k1+6k2)u(p1)×

(k1 + k2)
ν

(k1 + k2)2
, (35)

k1µ ×Mµν
3,c = +ig2fabc

(

tc
)j

i
× v̄(p2)(6k2)u(p1)×

kν2
(k1 + k2)2

. (36)

By inspection of eqs. (34) and (30), the first term in eq. (33) precisely cancels the contributions

of the first two diagrams,

k1µMµ
1+2 + k1µ ×Mµν

3,a = 0. (37)

The second term’s contribution (35) vanishes for the on-shell quarks. Indeed, by momentum

conservation k1 + k2 = p1 + p2, hence

v̄(p2)(6k1+6k2)u(p1) = v̄(p2)(6p1+6p2)u(p2) = v̄(p2)(6p2+m)u(p1) + v̄(p2)(6p1−m)u(p1) = 0 + 0

(38)

and therefore k1µ ×Mµν
3,b = 0.

But the third term’s contribution (35) does not vanish, and this breaks the Ward identity

for the net QCD amplitude:

k1µ ×Mµν
net = k1µ ×Mµν

3,c = +ig2fabc
(

tc
)j

i
× v6k2u× 1

(k1 + k2)2
× kν2 6= 0. (39)

However, the net violation of the Ward identity is proportional to the kν2 factor. Therefore, when

we contract the amplitude Mµν
net with the polarization vector of the second gluon, we obtain

k1µ ×Mµν
nete

∗

2ν = [· · ·]× (k2e
∗

2), (40)

which vanishes when the second gluon is transversely polarized! This agrees with the weakened

Ward identity of QCD: Amplitudes involving one longitudinal gluon vanish if all the other gluons

are transverse, but if two (or more) gluons are longitudinal, the amplitude does not have to

vanish. Instead, such amplitudes are related to the amplitudes involving ghosts and antighosts.

Indeed, consider the annihilation amplitude of two quarks into two longitudinal gluons,

M(qq̄ → gLgL). In Minkowski space, there are two distinct longitudinal polarizations for a
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gluon moving in the direction n, namely eµ
±

= (1,±n)/
√
2. In light of eq. (40), the ampli-

tude for producing two gluons with polarizations L+ (i.e., eµ ∝ kµ for each gluon) vanishes,

M(qq̄ → gL+gL+) = 0. The amplitude for producing two gluons with longitudinal polarizations

L− also vanishes, M(qq̄ → gL−gL−) = 0, although I am not going to prove it in these notes.

Instead, let me focus on the non-zero amplitude for producing one gluon with the longitudinal

L+ polarization and the other gluons with the longitudinal L− polarization.

In light of eq. (40), we get

M(qq̄ → gL+gLi) =

[

e1µ(L+) =
k1µ

ω1

√
2

]

×Mµν
net × e2ν(L−) =

1

ω1

√
2
× [· · ·]×

(

e2ν(L−)kν2
)

,

(41)

where [· · ·] stands for the factors from eq. (39) which I did not write down explicitly in eq. (40),

namely

[· · ·] = +ig2fabc
(

tc
)j

i
× v6k2u× 1

(k1 + k2)2
, (42)

while

eµ2 (L−)gµνk
ν
2 =

(1,−n)µ√
2

× gµν × ω2(1,+n)ν =
ω2√
2
× 2. (43)

Thus, in the center of mass frame where ω1 = ω2 =
1
2Ecm while (k1 + k2)

2 = s = E2
cm, we have

M(q + q̄ → gL+ + gL−) =
ig2

s
fabc

(

tc
)j

i
× v(p2)6k2u(p1). (44)

Let’s compare this amplitude to the annihilation of the same quark and the same antiquark

into a ghost and antighost. At the tree level, there is only one diagram for the later process,
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which yields the amplitude

iMtree(q + q̄ → gh + gh) = v̄(p2)(−igγλ)u(p1)× (tc
)j

i
× −igλν

s
× gfabckν2

= −g2

s
fabc

(

tc
)j

i
× v(p2)6k2u(p1).

(45)

By inspection, this amplitude is equal to the amplitude (44) for q + q̄ annihilating into two

longitudinal gluons instead of a ghost and an antighost,

M(q + q̄ → gh + gh) = M(q + q̄ → gL+ + gL−). (46)

In the next set of notes we shall learn that such relations stem from the BRST symmetry, but

right now we may use eq. (46) to understand how the physical cross-sections work in QCD.

The ghosts violate the spin-statistics theorem, so we must give up one one of its assumptions:

relativity, positive particle energies, or the positive norm in the Hilbert space. The correct choice

is to give up on the norm positivity in the extended Hilbert space including both the physical

and the unphysical quanta: While the physical (anti)quarks and transverse gluons must have

positive norm, the norm for the unphysical longitudinal gluons is ghost has mixed signature —

positive for the longitudinal gluons but negative for the ghosts and antighosts. And because of

the negative norm for the (anti)ghosts states, the cross-section for the annihilation-into-ghosts

process comes out negative,

dσ

dΩ
= − |M|2

64π2s
. (47)

By themselves, the negative cross-sections are impossible, but they make sense in the context of

net unpolarized cross-section where the final states could be either gluons or ghosts,

dσ(q + q̄ → · · ·)
dΩ

=
dσ(q + q̄ → gT + gT )

dΩ
+

dσ(q + q̄ → gL + gL)

dΩ
+

dσ(q + q̄ → gh + gh)

dΩ
.

(48)

Thanks to eq. (46), the negative cross-section for the annihilation into ghosts precisely cancels

the positive cross-section for the annihilation into longitudinal gluons,

dσ(q + q̄ → gL + gL)

dΩ
+

dσ(q + q̄ → gh + gh)

dΩ
= 0. (49)

Thus, the un-physical processes cancel each other, and the net annihilation cross-section is just
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the cross-section for producing the physical states only. At the O(g4) level, this means annihila-

tion into a pair of transverse gluons only,

dσ(q + q̄ → g + g or gh + gh)

dΩ
=

dσ(q + q̄ → gT + gT only)

dΩ
. (50)

Note: this relation is important for the unitarity of QCD.
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