Quantum Operators in the Fock Space and Wave Function Languages

A quantum operator acting on identical bosons can be described in terms of N—particle
wave functions (the first-quantized formalism) or in terms of the creation and annihilation
operators in the Fock space (the second-quantized formalism). In these notes I explain how

to translate between the two formalisms.

The Fock space formalism is explained in [y nofes on free felds, harmonic _oscillators]

bnd 1dentical bosong. On pages 8-12 of those notes, I define the bosonic Fock space as the

Hilbert space of states containing arbitrary numbers of identical bosons,

o
F = EB H(N identical bosons), (1)
N=0

then, starting with an arbitrary basis of one-particle states |«) I build the occupation-number
basis |[{nq}) for the whole Fock space, and eventually define the creation operators and the

annihilation operators in terms of that occupation number basis,
~ def
aL‘{n5}> = Vna+1 |{n’6 =ng+0,5})

da‘{n5}> def {(\)/% {n%:nﬂ—5a5}> for ny > 0,

for no, = 0.

In the present notes, I shall start by translating these definition to the language of N—
boson wave function. And then I shall use the wave-function definitions of the dL and aq
operators to translate the more complicated one-body, two-body, etc., operators between the

Fock-space and the wave-function languages.


http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/fock.pdf
http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/fock.pdf

CREATION AND ANNIHILATION OPERATORS IN THE WAVE FUNCTION LANGUAGE

First, a quick note on multi-boson wave functions. A wave function of an N-—particle
state depends on all N particles’ positions, ¥ (x1,X2,...,Xy), where by abuse of notations

each x; includes all the independent degrees of freedom of the ith particle,
x; = (4,vi, 2, spin;, isospin,, . . .).

Moreover, the wave function must be totally symmetric WRT any permutations of the iden-

tical bosons,

Y (any permutation of the x1,...,xy) = ¥(x1,...,XN). (3)

This Bose symmetry plays essential role in the wave-function-language action of the creation

and annihilation operators.

Definitions: Let the ¢,(x) be the wave function of the one-particle states a which we want
to be created by the djl operators and annihilated by the a, operators. Then, given an
N—boson state |N, 1)) with a totally symmetric wave function (X1, ...,X1), we construct the
totally symmetric wave functions '(x1,...,xy+1) and " (x1,...,xny_1) of the (N + 1)~
boson state |N + 1,0/) = al|N, ) and the (N — 1)-boson state |N — 1,4") = an |N, 1)

according to:

N+1

(X1, XNG1) = ‘/N+ Z% (i) X P(x1, - Ki - X)), ()
O(x1,. ., XN_1) = V' N dSX]\/'@Z(XN)XZ/)(Xl,...,XN_l,XN). (5)

In particular, for N = 0 the state ag |0) has ¢/'(z1) = ¢a(x1), while for N = 1 the state
aq |B) has ¢ (no arguments) = (¢4|10). Also, for N = 0 we simply define a, |0) def

T

Let me use egs. (4) and (5) as definitions of the creation operators aq and the annihilation
operators Go. To verify that these definitions are completely equivalent to the definitions (2)

in terms of the occupation-number basis, I am going to prove the following lemmas:



Lemma 1: The creation operators al, defined according to eq. (4) are indeed the hermitian

conjugates of the operators a, defined according to eq. (5).

Lemma 2: The operators (4) and (5) obey the bosonic commutation relations

(@a,ag) = 0, [ah.af] = 0, [aq,af] = dag. (6)
Lemma 3: Let ¢ng...0(X1,X2 ...,Xn) be the N-boson wave function of the state
Lat . atat
|O‘7ﬁ7""w> - _Taw”'aﬂaa|0> (7)

where the creation operators al, act according to eq. (4) while T is the number of trivial

permutations between coincident entries of the list (a, f,...,w) (for example, a <> 8 when

a and  happen to be equal). In terms of the occupation numbers n.,, 7' = H7 n,!. Then

distinct permutations

of (a,B,...,w)
1
Dafw(X1,X2 ..., XN) = 75 > $a(x1) X @5(x2) X -+ X Pp(xn)
(&,8,...,@)

all N! permutations

of (a,f,...,.w)
1
= Pa(x1) X ¢z(x2) X -+ X og(xn),
VT X NI Z g
8 (Oé, a'“7(:})

where D = N!/T is the number of distinct permutations. In other words, the state (7) is

precisely the symmetrized state of N bosons in individual states |a), |3), ...,

w).

Together, the lemmas 1-3 establish that the definitions (4) and (5) of the creation and
annihilation operators completely agree with the definitions (2)of the same operators in terms

of the occupation number basis.



Proof of Lemma 1: To prove that the operators dL and a, are hermitian conjugates of

each other, we need to compare their matrix elements and verify that for any two states

IN, ) and |N,4) in the Fock space we have

(N, 9laq |Nw) = (N gl al, [N, ¢)". (9)
Since the a, always lowers the number of particles by 1 while the dL always raises it by 1,

it is enough to check this equation for N=N-1— otherwise, we get automatic zero on

both sides of this equation.

Let 0" (x1,...,xn_1) be the wave function of the state | N — 1,¢") = a4 | N, ¥) according
to eq. (5). Then, on the LHS of eq. (9) we have

<N_17J|da|N7¢> = <N_1777,/;|N_1a¢”>
=/d3X1 ---/dSXN_lth*(Xl,...,XN_l) X@/)//(Xl,...,XN_l)

=/d3X1 ---/dSXN—1J*(X1,---,XN—1) X
X \/N dSXN¢Z X 2/)(X1,...,XN)

= \/N/dgxl - -/d3xN UF (X1, XN—1) X &5 (xN) X (x1, ..., xN).

(10)

Likewise, let J’(xl, ...,Xy) be the wave function of the state |N, 1Z/> = an |N — 1,12) ac-
cording to eq. (4). Then the matrix element on the RHS of eq. (9) becomes

<N7¢’&L|N—1JZ> :/d3X1 "'/dSXN¢*(X1,...,XN)X¢/<X1,...,XN>
:/d3X1 ~~'/d3XN¢*(X1,...,XN)X

N
X \/—1NZ¢Q(Xi) X @Z(Xl,... Xi,...,XN)
i=1

N
1
= \/_NZ/dgxl ---/d?’XNl/J*(Xl,...,XN)X
1=1

X b (i) X VX1, ... Kiy .o, XN).
(11)

By bosonic symmetry of the wavefunctions ¢ and 1;, all terms in the sum on the RHS are



equal to each other. So, we may replace the summation with a single term — say, for i = N

— and multiply by N, thus

~ N ~
(N, lal [N —1,4) = \/—Nx/dgxl ---/d?’wa*(xl,...,xN)xqsa(xN)xw(xl,...xN_l).
(12)

By inspection, the RHS of egs. (10) and (12) are complex conjugates of each other, thus

<N_17J|&a|Na¢> = <N7¢|dL|N_177;E>* (9)

This completes the proof of Lemma 1.

Proof of Lemma 2: Let’s start by verifying that the creation operators defined according
to eq. (4) commute with each other. Pick any two such creation operators ELL and &E, and
pick any N-boson state |N, ). Consider the (N + 2)-boson wavefunction ¢ (x1,...,Xy12)

of the state |N + 2,¢") = &L&E |N, ). Applying eq. (4) twice, we immediately obtain

1 Pa(xi) X dp(x;) ¥
P(X1,. XN y2) = >
VN + 1N +2) ij=1, N+2 X (X1,...,XN42 except X;, X;).

i#]
(13)
On the RHS of this formula, interchanging o <> 3 is equivalent to interchanging the summa-
tion indices ¢ <> 7 — which has no effect on the sum. Consequently, the states dszﬂ |N, )

and d;gdg | N, 1) have the same wavefunction (13), thus
alal [Nv) = abal |[N,v). (14)

Since this is true for any N and any totally-symmetric wave function ¢/, this means that the

T 1

creation operators a, and a 5 commute with each other.

Next, let’s pick any two annihilation operators a, and dﬁ defined according to eq. (5)

and show that they commute with each other. Again, let |N,%) be an arbitrary N-boson



state . For N < 2 we have
Qolg [N, Y) = 0 = agal |N,¢), (15)

so let’s focus on the non-trivial case of N > 2 and consider the (/N — 2)-boson wavefunction

"™ of the state [N —2,¢"") = Gadg [N, ). Applying eq. (5) twice, we obtain

w////(}q’ . ,XN—Q) _ \/m/dSXN /dSXN_1 ¢a(XN) X ¢5(XN—1) X
X 1/1<X1, ce ,XN72,XN,1,XN)-
(16)

On the RHS of this formula, interchanging o <> [ is equivalent to interchanging the
integrated-over positions of the N*" and the (N — 1) boson in the original state |N,).

Thanks to bosonic symmetry of the wave-function 1, this interchange has no effect, thus

dadﬂ |N7 ¢> = dﬁda |N, ¢> . (17)

Therefore, when the annihilation operators defined according to eq. (5) act on the totally-

symmetric wave functions of identical bosons, they commute with each other.

T

Finally, let’s pick a creation operator a 3 and an annihilation operator a,, pick an arbi-

trary N-boson state |V, 1), and consider the difference between the states
N, = ala, |N d |N,¢% = aal|N 18
| ’w> aﬁaa| >w> an | ,¢> aaa[?’ >¢> ( )

Suppose N > 0. Applying eq. (5) to the wave function ¢ and then applying eq. (4) to the

result, we obtain

N
WI(x1,. .., XN) = \/LNZQ%(XZ-)X@Z)”(Xl,...,xi,...,XN)
= (19)

N
= Z gzﬁﬁ(xi) X /d3XN+1 ¢Z(XN+1) X w(xl, ooy Kiy e ,XN,XN+1).
=1



On the other hand, applying first eq. (4) and then eq. (5), we arrive at

1/}6(X1, e ,XN) = VN +1 d3XN+1 ¢Z(XN+1) X ¢/(X1, - ,XN’XN+1)

N+1

:/d XN+1¢a XN+1 Z¢5 XZ XQﬂ(Xl,...,Xi,...,XN_H)

% (bﬁ Xl Xw(xlw'wx XN7XN+1)
= /d3XN+1 ¢Q(XN+1> X ;

+ Pp(xN41) X (X1, ..., XN)

N
= ¢p(xi) x /d3XN+1 Ga(XN+1) X V(X5 Xiy -+ XN, XN+1)
=1
+ h(x1,...,XN) X /dSXN—H Ga(XN+1) X dp(XN+1)

= YO(x1,...,xpN) {( compare to eq. (19) )

+ w(xl,...,XN) X <¢a‘¢ﬁ>' ( )
20

Comparing egs. (19) and (20), we see that

¢6(X1,...,XN) —w5(X1,...,XN) = w(Xl,...,XN>><<¢a|(]5ﬂ> = w(Xl,...,XN)X(Saﬁ, (21)

where <gba|¢5> = 0q by orthonormality of the 1-particle basis {¢,(x)},. In Dirac notations,

eq. (21) amounts to

(Bath = haa) IN.¥) = |N,¢)) % dap (22)

Thus far, we have checked this formula for all bosonic states |V, 1) except for the vacuum

|0). To complete the proof, note that
i, |0) = 0 = ala,|0) =0, (23)

while

W0510) = a

1a¢ﬂ> = <¢a|¢ﬂ> X |O> = 5045 X |0>> (24)

Q>



hence

(Gt = aia) [0) = das % 0). (25)
Altogether, egs. (22) and (25) verify that
(0, 5] W) = a0V (26)

for any state W in the bosonic Fock space, hence the operators a, and d% defined according

to egs. (4) and (5) indeed obey the commutation relation [dq, dg] = 003
This completes the proof of Lemma 2.
Proof of Lemma 3: Let me start with a note on the normalization factor 1/v/T in eq. (7).

We need this factor to properly normalize the multi-boson states in which some bosons may

be in the same 1-particle mode. For example, for the two particle states,

1
la, B) = dTﬁ&UO) when a # 3, but |a,«a) = Ed&&MO). (27)

In terms of the occupation numbers, the properly normalized states are

)"

Ne!

nad) = @ () = & )n,a ) = (H

a

) |vacuum) . (28)

hence the factor 1/v/T in eq. (7).

Now let’s work out the wave functions of the states (7) by successively applying the

creation operators according to eq. (4):
1. For N =1, states |a) = al, |0) have wave functions ¢ (x).
2. For N = 2, states VT |a, B) = d/TB&L |0) have wavefunctions

VI dusloaxa) = (00000 (x2) + dae)tax)- (29



3. For N = 3, states VT |a, 8,7) = djydgd:& |0) have

01 00) X (05 (x2) b (3) = 9500 2
VT X Gapy(X1,X2,X3) = % + ¢y (x2) x %((ﬁﬁ(Xl)%(X?) - ¢6(X3)¢a(X1))
+ 6y x3) X = (83(31)0n0x2) = 05(x2)00 (1))

6 permutations
of (x1,X2,x3)

== X (RosE)be(x)

(i17i27}~(3)

6 permutations

1 of (a,8,7)
- o= Z $a(x1)05(x2)P5(x3).
(&,8,%)

(30)

Proceeding in this fashion, acting with a product of N creation operators on the vacuum
we obtain a totally symmetrized product of the 1-particle wave functions ¢ (x) through
¢, (x). Extrapolating from eq.(30), the N-particle state vT |a,...,w) = - - - @l |0), has

the totally-symmetrized wave function

all permutations

of (a,...,w)
VT x Gaw(X1y - XN) = \/% Z ba(x1) X -+ X pz(xy). (31)
Y (@)

Dividing both sides of this formula by the v/T factor, we immediately arrive at the second
line of eq. (8).

Finally, the top line of eq. (8) obtains from the bottom line by adding up coincident
terms. Indeed, if some one-particle states appear multiple times in the list (a,...,w), then
permuting coincident entries of this list has no effect. Altogether, there T such trivial
permutations. By group theory, this means that out of N! possible permutations of the list,
there are only D = N!/T' distinct permutations. But for each distinct permutations, there
are T' coincident terms in the sum on the bottom line of eq. (8). Adding them up gives us

the top line of eq. (8).



This completes the proof of Lemma 3.

Altogether, the three lemmas verify that the operators &Iy and a, defined according to

egs. (4) and (5) are indeed the creation and the annihilation operators in the bosonic Fock

space.

ONE-BODY AND TwWO0O-BODY OPERATORS
IN THE WAVE FUNCTION AND THE FOCK SPACE LANGUAGES

The one-body operators are the additive operators acting on one particle at a time, for
example the net momentum or net kinetic energy of several bosons. In the wave-function
language (AKA, the first-quantized formalism), such operators act on N-particle states

according to

N
Aflle)t = Z A(i*" particle) (32)
i=1

where A is some kind of a single-particle operator. For example,

N
the net momentum operator pgle)t = Z pi, (33)
=1
~2
the net kinetic energy operator K. I(lle% = Pi : (34)
P 2m
N
the net potential energy operator Vn(;t) = Z V(Xi). (35)
i=1

In the Fock space language (AKA, the second-quantized formalism), such net one-body

operators take form

AZ =" (al Alp) x afayg (36)
a’/B

where the matrix elements A, g = (| A|B) are taken in the one-particle Hilbert space.

Theorem 1: Although egs. (32) and (36) look very different from each other, they describe

exactly the same net one-body operator.

10



Proof: To establish the equality between the operators (32) and (36), we are going to verify

that they have exactly the same matrix elements between any N-boson states (NN, {/;\ and

[N, ),

(N, & A [N, v0) = (N, 9] AL) N, ). (37)

Let’s start by relating the matrix elements on the LHS of this formula to the A, 3 = («| Alp).
For N = 1 the relation is very simple: Since the states |a) make a complete basis of the

1-particle Hilbert space, for any 1-particle states (J | and |¢)

WGIAL) = 3 (Blayx (o] A18) x (Blw) = Z%Mﬁw<mwﬁﬂwwm
7 " (38)

This is undergraduate-level QM.

In the N—particle Hilbert space we have a similar formula for the matrix elements of the
A acting on particle #i, the only modification being integrals over the coordinates of the

other particles,

(N, 9] A1 (i) [N, p) =

/ /d3X1 @iy dPxy aZﬂAaﬁ X (/d%z“Z*(xl,...,ii,...,xN)%(;zl-))

X (/dgxi ¢}§(Xi)¢(xl7---,Xi,---,XN))
= ZAQB X /---/d?’xl---dstd?’fq @Z*(Xl,...,ii,...,XN) X gba(fii)
o,f

X (bZ)(XZ) X w(Xl, ey Xy ,XN).
(39)

For symmetric wave-functions of identical bosons, we get the same matrix element regardless

of which particle #i we are acting on with the operator A, hence for the net A operator (32),

(N, | AU IN ¢y = N x ZAaﬁ x/ /d x1 - - -d*xy_q Pxydxy (40)
OF (X1, XN, XN) X da(Xy)
X ¢Z(XN) X w(Xl, . ,XNfl,XN>.

11



Now consider matrix elements of the Fock-space operator (36). In light of eq. (5), the
state |V — 1,¢") = ag |N,9) has wave-function

V(x1,. ., xyo1) = VN [dPxy dh(xn) x (1, ... Xn-1,XN). (41)
Likewise, the state |N -1, QZH> = Gq | N, 15} has wave-function
V(x1,.. xn-1) = VN [dP%y 65&N) X O(X1, ..., XN_1, XN ). (42)

Consequently,

<N777,E| dgdﬁ|Na¢> = <N_ 1a7:5”‘ ‘N_ 17¢//>
— //d3X1 e XN—1 J//*(le_ ..,XN,l) X ’l/}//(X1,...,XN71)

X \/N dSXNQSE(XN) X w(Xl,...,XN_l,XN).
(43)

Comparing this formula to the integrals in eq. (40), we see that

(NLOLASL INY) = 37 Aag x (.| ahag IN0) = (NGIADIN.9).  (44)
a,B

Quod erat demonstrandum.

Now consider the two-body operators — the additive operators acting on two particles

at a time. For example, the net two-body potential
~ (1) 1 ' L
V|rmnet = 5 Z V(XZ - Xj)' (45)

More generally, in the wave-function language we start with some operator B in a two-

particle Hilbert space, make it act on all (¢, ) pairs of particles in the N-particle Hilbert

12



space, and total up the pairs,

s _ 1i,j:1,...,NB - » y
net = 5 E (¢"" and 7" particles). (46)
i#j

In the Fock space language, such a two-body operator becomes

Bl = 3 Y (ol @ (B)B() @ 19)) alahasa, . (47)

,B3,7,0
Note: in this formula, it is OK to use the un-symmetrized 2-particle states (o] ® (| and
|7)®|8), and hence the un-symmetrized matrix elements of the By. At the level of the second-

2) Atat ATt

quantized operator Bnet, the Bose symmetry is automatically provided by aqa 5= a 3y and

ag5a~ = ayGg, even for the un-symmetrized matrix elements of the two-particle operator B.

For example, the two-body potential V' (x; —X32) in the un-symmetrized momentum basis

has matrix elements

(P!

]p1> ®[p2)) = L~ K P, +Ph,p1+p2 X W(aq)
where q = p} —p1 = p2 — Py (48)
and W(q) = /dx eIV (x),

hence

7 (2) 17-3 a
Vnet = L Z W Z p1—|—q p2 q p2 p1 : <49)
P1,P2

Theorem: Again, for any two-particle operator B egs. (46) and (47) define exactly the same
net operator Bhet. Indeed, the operators defined according to the two equations have the

same matrix elements between any two N—-boson states,
(N, 9| Byt IN.4) = (N0 BEIN,w)  for any states (N,] and [N,v).  (50)
Proof: This works similarly to the previous theorem, except for more integrals. Let
Bagns = ({o] ® (8]) Ba(|7) @ 16)) (51)
be matrix elements of a two-body operator By between un-symmetrized two-particle states.

13



Then for generic two-particle states (1| and [¢)) — symmetric or not — we have

(WIB2 ) = D Bapos x (0] (Jla) ®16)) x (21 (8]) [v)

Oﬁﬂ?’y:é

= 3 Busos x [ [0 R b o R (1) () (52)

O‘767776

X //d3X1 d3xs ¢ (x1) 5 (x2) (%1, x2).

Similarly, in the Hilbert space of N > 2 particles — identical bosons or not — the operator

By acting on particles #¢ and #7 has matrix elements
(N, 0] Ba(i™, j™) IN,0) =

— Z Baﬁﬁ(sX/"'/d3X1"'¢f/§(/"'§l?ff/"'d3XN

a7/87775

//dgfcz d3)~(j @Z*(Xl, e ,)Nii, e ,)~(j, e ,XN)gba(f(i)qb/j()N(j)

X //dgxi d3xj 05 (%) 95 (X)W (X1, -+, Xy oo, Xy X))
(53)
For identical bosons — and hence totally symmetric wave-functions ¢ and @Z — such matrix
elements do not depend on the choice of particles on which By acts, so we may just as well

let i = N —1 and j = N. Consequently, the net B operator (21) has matrix elements

3 B0 vy = TN 3 B - L) )
N(N -1 (54)
= % X Z Bag,fy(g X [aﬁﬁ(g

a7ﬂ7775

where

Ia/8776 :/-~./d3X1---d3XN_2

//dsf(N—1 PPN DT (X1, - XN 2, XN 1, XN )P (XN—1) 5 (XN) (55)

X //d3XN1 PPxn % (xN—1) 05 (XN )(X1, - .. XN_2,XN_1,XN)

Now let’s compare these formulae to the Fock space formalism. Applying eq. (5) twice,

14



we find that the (N — 2)—particle state

|N =2,9") = agi, [N, ) (56)
has wave function

wl"(xl, e ,XN_Q) = \/N(N — 1) //dSXN—l dBXN Qf;(XN—l)qbg(XN)

(57)
X P(X1y -0y XN-2, XN-1, XN)-
Likewise, the (N — 2)-particle state
[N =2.9") = agi, |N.4) (58)
has wave function
F"(x1, .. Xy_g) = \/m//d3xN1 dBxy ¢ (R 1) (RN) 50

X (X1, XN—2, N1, XN).
Taking Dirac product of these two states, we obtain
(N | afalasa, IN ) = (N —2,0"||N —2,¢")

/ /d3X1 Pxn 00" (X1, Xn—2) X W7 (X1, .. XN_2)

— 1) X Iaﬂ ~é
(60)
where 1,35 is exactly the same mega-integral as in eq. (55). Therefore,
At A s = (2
(NGB IN, ) = 3 > Bagao x (N, 0| ahabasa, IN,0) = (N9 BR IN,¢) (61)

a,f3,7,0

where the second equality follows directly from the eq. (47) for the B? operator. Quod erat

net

demonstrandum.

15



I would like to conclude these notes with a couple of simple theorems about the commu-

tators of the net one-body and two-body operators.
Theorem 1: Let fl, B, and C be some one-particle operators, and let Afe)t, BI@, and C’r(lz%

be the corresponding net one-body operators in the fock space according to eq. (36).

if [A,B] = C then [fl(?) B

net’ —net

| =l (62)

net °

Theorem 2: Now let A be a one-particle operator while B and C are two-particle operators.

Let A B?) and C2)

net’ net’ net

eqs. (36) and (47).

be the corresponding net operators in the Fock space according to

if (A1) + AE™),B] = ¢ then [AR, BRI = . (63)
Proof of Theorem 1: The theorem follows from the commutator
[a%ag, alas) = 0pyabas — dasilas (64)

which you should have calculated in homework set#3, problem 4(a). Indeed, given

~(2 ~ At o~
AZ) =" (al Alp) ala, (65)
a?ﬂ
and
B =" (11 Bs) alay, (66)
7,0

16


http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/hw03.pdf

we immediately have

AQLBE| = X (el A1) (I B1o) lalaydla,]
a,B,y,0
((using eq. (64) )

= 3 (alA18) (1 B18) (55q0ka; — Sasilay)

a,B,7,0
- Z alag x Z (| Aly) (7| B|3) — Zdl% X Z (7| Bl (o] A|B)
S L o (67)
- Z ahas (| AB[6) — Z%a/g (7| BA[B)
a,é ﬂfy

{((renaming summation indices ))

=3 ahay < ((al ABIB) ~ (ol BA|B))

Quod erat demonstrandum.

Proof of Theorem 2: Similarly to the theorem 1, this theorem also follows from a commutator

you should have calculated in homework set#3, problem 4(a), namely

~(2 ~ At A
A®) = Sl Al) ala, (36)
nnu
and
~(2 ~ At AT A A
BE =1 Y (a®p|Bly®s) alala,a;,, (47)
a’ﬁ?’y76

17


http://www.ph.utexas.edu/~vadim/Classes/2019s-qft/hw03.pdf

so the commutator [1211(1261, Br(l?t} is a linear combination of the commutators (68). Specifically,

~(2 ~ (2 N ~ At A At At A A
A2 BEN = 1 S (uA) (a® 8 Bly®06) [ala,, dlaka,a,)
1,v,0,3,7,0

+ % > agaLayaéxZ<u|A|y> (a @ v|B|y®d)
(69)

>
a,B,v,0 w
)3

ababana, x Y (0@ B Bly @ ) (ul Alv)
a76777y ’LL
{(renaming summation indices )

1 Atat s o
= 3 Z aiv%%%xoocﬁm%
a7/37775

where

Caprs =P (AN A@B|IBly®d) + > (BIAIN) (a® N Bly® )
A A

— Z (@® B BA®6) (AAl) = D (a@p|Bly®X) (AAl5)

A
= (e@pl (AQMB + A™)B — BAQ®) - BA2™)) |y 29)

= (e@pl[(A) + A@Y) B ) = (ae sl Clyed).
(70)
Consequently, [Aggz, Bet(zg] = C’t(gt Quod erat demonstrandum.
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