
MANIFESTLY RELATIVISTIC ELECTRODYNAMICS

In these notes I shall write down Maxwell equations and other important electromagnetic

formulae in a manifestly relativistic form which is covariant WRT Lorentz symmetries. I shall

focus on the microscopic fields and equations — or equivalently, on EM fields in the vacuum

where all the charges and the currents are explicit rather than hiding inside a polarized

dielectric or a magnetized material. This way, I would not have to deal with a preferred

frame where some dielectric and/or magnetic medium is at rest — in the vacuum, all inertial

frames are on equal footing.

As a first step in that direction, let’s find out how various EM quantities — the fields

E and B, the potentials Φ and A, the charge and current densities ρ and J, etc., etc. —

transform under Lorentz symmetries. For simplicity, I shall use the Gauss units rather than

the more conventional MKSA units: this way, I would not have to deal with the pesky factors

of ǫ0 and µ0 all over the place, but just the powers of the speed of light c.

The 4–current Jµ.

Let me start by showing that the electric charge density ρ and the electric current density

J form a genuine Lorentz vector

Jµ = (cρ,J). (1)

Let me start with a simple model of a charged fluid made of particles having the same charge

q. In the rest frame of the fluid — where the particles are moving randomly in all directions,

perhaps at high speeds, but the fluid as a whole does not flow — we have

ρr = qnr, Jr = 0 (2)

where nr is the particle density in the rest frame. In a different reference frame where the

fluid as a whole flows with velocity v, the particle density n would be larger by due to

Lorentz contraction of the fluid in the forward direction,

n = γ × nr, (3)
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hence the electric charge and current densities

ρ = qn = qnrγ, J = qnv = qnrγv. (4)

Or, in terms of the 4–velocity uµ = (γc, γv),

cρ = qnr × u0, J i = qnr × U i =⇒ Jµ def
= (cρ,J) = qnr × uµ. (5)

Under Lorentz transforms q — the charge of a single particle — is invariant, and nr is also

invariant since it’s defined relative to the rest frame of the fluid. On the other hand, the

4–velocity uµ is a Lorentz vector which transforms to u′µ = Lµ
νu

ν , so the 4–current in eq. (5)

also transforms as a Lorentz vector,

J′µ = q′n′r × u′µ = qnr × Lµ
νu

ν = Lµ
νJ

ν . (6)

Now take a more realistic picture of several charged fluids comprised of different particle

types, with each fluid moving at its own collective velocity vi. For example, ion cores and free

electrons in a moving metal, or positive ions, negative ions, and free electrons in a plasma.

For such a multi-fluid model,

ρ =
fluids
∑

i

qin
rest
i γ(vi) , J =

fluids
∑

i

qin
rest
i γ(vi)vi (7)

where nresti is the particle density of the fluid #i in its own rest frame, hence factors of γ(vi).

In 4–vector form eq. (7) becomes

Jµ =
fluids
∑

i

qin
rest
i × uµi , (8)

and since qi and nresti are all Lorentz invariant while the uµi are Lorentz vectors, it follows

that the 4–vector current Jµ also transforms like a Lorentz vector.

2



Finally, consider a different example of a single charged particle moving along a worldline

x(t). In 3D terms, the charge and current densities due to this particle are singular

ρ(y, t) = qδ(3)(y− x(t)), J(y, t) = qv(t)δ(3)(y − x(t)). (9)

In 4D terms, these densities can be summarized as

Jµ(y, t) = quµ(t)×
δ(3)(y − x(t))

γ(v(t))
. (10)

At first blush, the second factor here does not look Lorentz invariant, but we may rewrite it

in a manifestly invariant form as

∫

dτ δ(4)(yµ − xµ(τ)) =
δ(3)(y− x(t))

cγ(v(t))
, (11)

where τ is the proper time along the particle’s worldline xµ(τ) and the 1/cγ factor on the

RHS comes from dx0/dτ = cγ. In the context of eq. (10), we put the time-dependent uµ

factor inside the integral, thus

Jµ(y) = qc

∫

dτ uµ(τ)× δ(4)(y − x(τ)). (12)

Again, the RHS here obviously transforms like a Lorentz vectors, hence so does the 4–current

Jµ.

The final argument in favor of Jµ = (cρ,J) being a genuine Lorentz vector regardless of

particular sources of the charges and the currents is the continuity equation

∂ρ(x, t)

∂t
+ ∇ · J(x, t) = 0. (13)

This equation is a local form of the electric charge conservation, and it must always hold true,

come hell or high water, or else the whole body of Electrodynamics would come crashing
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down. In 4D terms, the continuity equation becomes

∂µJ
µ(x) = 0. (14)

Indeed, since the derivative 4–vector is defined with the sign convention ∂µ = (1c
∂
∂t ,+∇), we

have

∂µJ
µ(x) = ∂0J

0 + ∇ · J =
1

c

∂

∂t
(cρ) + ∇ · J = 0. (15)

The current density and the charge density in eqs. (13) and (14) are the net electric current

and charge densities stemming from all possible sources. Therefore, to make sure eqs. (13)

and (14) hold true in all inertial frames, the current and charge densities stemming from

all kinds of sources must transform in a similar manner under the Lorentz symmetries, so

in light of the above examples, Jµ(x) stemming from whatever source must transform as a

Lorentz vector field:

for x′µ = Lµ
νx

ν , J ′µ(x′) = Lµ
νJ

ν(x).

This makes the 4–divergence ∂µJ
µ(x) a Lorentz scalar, so the relativistic continuity equa-

tion (14) is manifestly Lorentz invariant.

Let me finish this section with an explicit formula for the charge and current densities

in two inertial frames moving at velocity v relative to each other:

ρ′(x′, t′) = γρ(x, t) −
γv

c2
· J(x, t),

J′(x′, t′) = J(x, t) +
γ − 1

v2
(v · J(x, t))v − γρ(x, t)v

(16)

Electromagnetic potentials.

Next, consider the electromagnetic potentials Φ(x, t) and A(x, t). In the Landau gauge,

these potentials obey the wave equations

Φ(x, t) = 4πρ(x, t), A(x, t) =
4π

c
J(x, t). (17)

(Note Gauss units, hence factors of 4π and 1/c.) Under Lorentz transforms, the right hand

sides of these equations mix with each other according to eqs. (16), so the left hand sides
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— and hence the potentials Φ and A should also mix with each other. Moreover, the

D’Alembert operator = ∂µ∂
µ is Lorentz invariant, so the potentials Φ and A should mix

with each other exactly as cρ and J, and since the latter are components of a Lorentz vector

field Jµ(x), the potentials should also form a Lorentz vector field

Aµ(x) =
(

Φ(x),A(x)
)

. (18)

Consequently, the wave equations (17) can be written in a manifestly covariant form as

Aµ(x) =
4π

c
Jµ(x), (19)

or in terms of explicit 4–derivative operators

∂ν∂
νAµ(x) =

4π

c
Jµ(x). (20)

Note: the wave equations (17) or (19) apply as written only in the Landau gauge,

∇ ·A +
1

c

∂Φ

∂t
= 0 (21)

(in Gauss units). This gauge condition happens to be Lorentz-invariant and can be written

in covariant form as

∂µA
µ(x) = 0. (22)

Other gauge conditions — like the Coulomb gauge ∇ ·A = 0 — are not Lorentz invariant,

which makes for more complicated Lorentz transforms of the vector and scalar potentials.

In general, to establish such a rule, we follow a 3-step procedure:

1. First, we gauge transform

A(x) → Ã(x) = A(x) + ∇Λ(x), Φ(x) → Φ̃(x) = Φ(x) −
1

c

∂Λ(x)

∂t
(23)

— or in 4–vector form

Ãµ(x) = Aµ(x) − ∂µΛ(x) (24)

— for some Λ(x) which would change the gauge condition of Aµ(x) to the Landau

gauge for the Ãµ(x), namely∂µÃ
µ = 0.
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2. Second, we Lorentz transform the Ãµ(x) fields as Lorentz vectors,

Ã′µ(x′) = Lµ
νÃ

ν . (25)

3. Third, we gauge transform again

A′ν(x′) = Ã′µ(x′) + ∂′µΛ̃(x′) (26)

for some other Λ′(x) chosen so as to reimpose the original gauge condition in the new

reference frame.

⋆ However, we may summarize all 3 steps as

A′ν(x′) = Lµ
νA

ν(x) + ∂′µ
(

Λ̃(x′)− Λ(x′)
)

, (27)

so all we need is to find the gauge transform parameter (Λ̃−Λ)(x) which would impose

the desired gauge condition in the new reference frame.

Bottom line: In the Landau gauge — or if no gauge condition is imposed — the 4–potential

Aµ(x) transforms like a Lorentz vector field. But when subject to other gauge conditions, a

Lorentz symmetry of the potentials should be accompanied by a gauge transform according

to eq. (27) in order to reimpose the gauge condition.

Electric and magnetic fields.

The electric field E(x, t) and the magnetic field B(x, t) are related to the scalar and

vector potentials Φ(x, t) and A(x, t) according to

E(x, t) = −∇Φ(x, t) −
1

c

∂

∂t
A(x, t), B(x, t) = ∇×A(x, t) (28)

(Gauss units). In spacetime index notations, the electric field equation becomes

Ei(x) = −
∂

∂xi
Φ(x) −

∂

∂x0
Ai(x) = −∂iA

0(x) − ∂0A
i(x) = +∂iA0(x) − ∂0Ai(x), (29)
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while the magnetic field equation becomes

Bi(x) = ǫijk
∂

∂xj
Ak(x) = ǫijk ∂jA

k(x) = −ǫijk∂jAk(x), (30)

or equivalently

Bkǫkℓm = −∂ℓAm(x) + ∂mAℓ(x). (31)

In spacetime terms, the right hand sides of eqs. (29) and (31) are different components

of an antisymmetric Lorentz tensor field

F µν(x)
def
= ∂µAν(x) − ∂νAµ(x) = −F νµ(x). (32)

In a 3D space, such an antisymmetric tensor would be equivalent to an axial vector, but

in 4D the antisymmetric tensors are not vectors and have different numbers of independent

components, namely

4× 3

2
= 6.

In particular, the independent components of the tensor (32) are the 3 components of the

electric field E plus 3 components of the magnetic field B. Specifically, in light of eqs. (29)

and (31),

F 00 = 0, F i0 = +Ei, F 0j = −Ej , F ij = −ǫijkBk. (33)

Note: the signs here are for the F µν components with upper indices. When we lower both

indices, we get

F00 = 0, Fi0 = −F i0 = −Ei, F0i = −F 0i = +Ei, Fij = +F ij = −ǫijkBk.

(34)

The electric and the magnetic fields are gauge-invariant, i.e. invariant under the gauge

transforms of the potentials. In 4D terms, we can see the gauge invariance of the F µν tensor

as

A′µ(x) = Aµ(x) − ∂µΛ(x), (35)
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F ′µν(x) = ∂µ
(

A′ν = Aν − ∂νΛ
)

− ∂ν
(

A′µ = Aµ − ∂µΛ
)

=
(

∂µAν − ∂νAµ
)

+
(

−∂µ∂νΛ + ∂ν∂µΛ
)

= F µν(x) + 0. (36)

Now consider the Lorentz transformation properties of the F µν(x) fields. Without a

gauge constraint (or in the Landau gauge), the potential 4-vector Aµ(x) transforms like a

Lorentz vector field, and the derivative 4–vector ∂µ also transforms like a Lorentz vector,

x′µ = Lµ
νx

ν , A′µ(x′) = Lµ
νA

ν(x), ∂′µ = Lµ
ν∂

ν , (37)

so the antisymmetric tensor field

F µν(x) = ∂µAν(x) − ∂νAµ(x) (38)

transforms like a genuine Lorentz tensor field

F ′µν(x′) = Lµ
κL

ν
λF

κλ(x). (39)

Let’s spell out this transformation rule in components for a Lorentz boost of velocity v in x

direction:

L0
0 = Lx

x = γ, L0
x = Lx

0 = −βγ, Ly
y = Lz

z = 1, other Lµ
ν = 0, (40)

hence

E′x = F ′x0 = γ × γ × F x0 − βγ × γ × F 00 − βγ × γ × F xx + βγ × βγ × F 0x

= γ2 ×Ex − βγ2 × 0 − βγ2 × 0 + β2γ2 × (−Ex)

= γ2(1− β2)× Ex = Ex, (41)

E′y = F ′y0 = 1× γ × F y0 + 1× (−βγ)× F yx

= γ × Ey − βγ × Bz = γ(Ey − βBz), (42)
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E′z = F ′z0 = 1× γ × F z0 + 1× (−βγ)× F zx

= γ × Ez − βγ × (−By) = γ(Ez + βBy), (43)

B′x = F ′zy = 1× 1× F zy = Bx, (44)

B′y = F ′xz = γ × 1× F xz − βγ × 1× F 0z

= γ × By − βγ × (−Ez) = γ(By + βEz), (45)

B′z = F ′yx = 1× γ × F yx + 1× (−βγ)× F y0

= γ × Bz − βγ × (+Ey) = γ(Bz − βEy). (46)

Or in 3-vector notations

E′
‖ = E‖ , E′

⊥ = γ
(

E⊥ + ~β ×B⊥

)

,

B′
‖ = B‖ , B′

⊥ = γ
(

B⊥ − ~β × E⊥

)

.
(47)

For an example, consider the EM fields of a point charge moving at constant velocity v.

In the rest frame of the charge, the electric field is Coulomb and the magnetic field is absent,

E′(x′) =
Qx′

R′3
, B(x′) = 0. (48)

Transforming these fields back to the lab frame, we get

E‖(x, t) = E′
‖(x

′) =
Qx′‖

R′3
,

E⊥(x, t) = γ
(

E′
⊥(x

′)− ~β ×B′
⊥(x

′)
)

=
γQx′⊥
R′3

− 0 ,

B‖(x, t) = B′
‖(x

′) = 0,

B⊥(x, t) = γ
(

B′
⊥(x

′) + ~β × E⊥(x
′)
)

= 0 +
γQ(~β × x′⊥)

R′3
,

(49)

where

x′⊥ = x⊥ , x′‖ = γ(x‖ − vt). (50)
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Consequently

R′ =
√

γ2(x‖ − vt)2 + x2⊥, (51)

and therefore

E‖(x, t) =
γQ(x‖ − vt)

[

γ2(x‖ − vt)2 + x2⊥
]3/2

,

E⊥(x, t) =
γQx⊥

[

γ2(x‖ − vt)2 + x2⊥
]3/2

,

B‖(x, t) = 0,

B⊥(x, t) =
γQ(~β × x⊥)

[

γ2(x‖ − vt)2 + x2⊥
]3/2

= ~β × E⊥(x, t) .

(52)

In covariant form, all these EM fields can be summarized as

F µν(x) =
Q
(

xµuν − xνuµ
)

cR′3
(53)

where uµ is the 4–velocity of the charged particle while

R′2 =
(x · u)2

c2
− (x · x). (54)

Verifying these covariant formulae is a part of your next homework set#12 (problem 2).

At high charge speeds v, the R′ in denomeinators of eqs. (52) is more sensitive to the

longitudinal distance x‖− vt from the charge than to the transverse distance x⊥, so the EM

fields become squashed in the longitudinal direction. To illustrate this point, here is the
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picture of the electric field lines for γ = 2:

x⊥

x‖ − vt

In the limit of ultra-relativistic velocity of the charge — v so close to c that γ ≫ 1, — this

picture becomes so squashed that the fields are pretty much limited to the transverse plane

containing the charge. Specifically,

for γ → ∞,
γ

[

γ2(x‖ − vt)2 + x2⊥
]3/2

−→
2δ(vt− x‖)

x2⊥
≈

2δ(ct− x‖)

x2⊥
. (55)

and therefore

E‖ → 0,

E⊥ →
2Qx⊥

x2⊥
δ(ct− x‖),

B‖ = 0,

B‖ = ~β × E → n× E,

(56)

where n is the direction of the charge’s velocity. These fields look like a δ–pulse of a plane

EM wave; indeed, both E and B fields are transverse to the wave’s direction, and B = n×E.
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Lorentz covariant Maxwell equations.

The microscopic Maxwell equation

∇ · E = 4πρ, (57)

∇×E +
1

c

∂B

∂t
= 0, (58)

∇ ·B = 0, (59)

∇×B −
1

c

∂E

∂t
=

4π

c
J, (60)

(Gauss units) can be written in a Lorentz-covariant form. Let’s start by writing the induction

law (58) in terms of the F µν(x) tensor field and its components:

(∇× E)i = ǫijk∇jEk = ǫijk(−∂j)(+F k0), (61)

(∇× E)i × ǫijk = −∂jF k0 + ∂kF j0 = −∂jF k0 − ∂kF 0j , (62)

1

c

∂Bi

∂t
× ǫijk = ∂0(−F jk) = −∂0F jk, (63)

so the induction law (58) becomes

−∂jF k0 − ∂kF 0j − ∂0F jk = 0. (64)

To give this equation a covariant form, let’s define a 3-index Lorentz tensor

Hλµν def
= ∂λF µν + ∂µF νλ + ∂νF λµ. (65)

In terms of this tensor, the Induction Law (58) and hence (64) becomes

Hjk0 = 0, (66)

which suggest that Hλµν should also vanish for the other index combinations. But before we

check all those combinations, let’s take a look at the index symmetries of the Hλµν tensor
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regardless of any Maxwell equations. By construction (65), this tensor is symmetric under

cyclic permutations of its 3 indices,

Hλµν = Hµνλ = Hνλµ (67)

and thanks to the antisymmetry of the tension field tensor F µν = −F νµ, H is antisymmetric

under pairwise index permutations,

Hλνµ = ∂λF νµ + ∂νF µλ + ∂µF λν

= −∂λF µν − ∂νF λµ − ∂µF νλ

= −Hλµν

(68)

and likewise

Hνµλ = Hµλν = −Hλµν . (69)

In other words, the tensor Hλµν is totally antisymmetric in its 3 indices. Consequently, it

has only

4× 3× 2

3!
= 4

independent components, so there are only 4 independent equations Hλµν = 0. the rest

are trivially true and do not constrain the EM fields in any fashion. Specifically, the indices

λ, µ, ν must be all different from each other, and their order does not matter. In other words,

the 4 independent equations Hλµν = 0 correspond to

H120 = 0, H230 = 0, H310 = 0, and H123 = 0. (70)

The first 3 of these equations comprise the Induction Law (58) in the form of eq. (66), while

the fourth equation is the Magnetic Gauss Law (59). Indeed,

H123 = ∂1F 23 + ∂2F 31 + ∂3F 12

= (−∂x)(−Bx) + (−∂y)(−By) + (−∂z)(−Bz)

= +∇ ·B,

(71)
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thus

H123 = 0 ⇐⇒ ∇ ·B = 0. (72)

Bottom Line: the homogeneous Maxwell equations (58) (the induction law) and (59) (the

magnetic Gauss law) can be written in Lorentz-covariant form as

∂λF µν + ∂µF νλ + ∂νF λµ = 0. (73)

Now consider the inhomogeneous Maxwell equations (57) (the Gauss law) and (60)

(Maxwell–Ampere law). In terms of the F µν tensor,

(∇×B)i = ǫijk
∂

∂xj
Bk = ∂j

(

Bkǫijk = −F ij = +F ji
)

= +∂jF
ji, (74)

−
1

c

∂Ei

∂t
= −∂0

(

Ei = F i0 = −F 0i
)

= +∂0F
0i, (75)

hence the LHS of the Maxwell–Ampere equation becomes

(

∇×B −
1

c

∂E

∂t

)i

= ∂jF
ji + ∂0F

0i = ∂µF
µi. (76)

Likewise, we may write the LHS of the Gauss law as

∇ · E = ∂jE
j = ∂jF

j0 = ∂jF
j0 + ∂0

(

F 00 = 0
)

= ∂µF
µ0. (77)

Consequently, the inhomogeneous Maxwell equations become

∂µF
µ0 = 4πρ =

4π

c
J0 (Gauss Law), (78)

∂µF
µi =

4π

c
J i (Maxwell–Ampere Law), (79)

and we may combine them in a Lorentz-covariant form as

∂µF
µν(x) =

4π

c
Jν(x). (80)
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Wave Equations for the EM fields

A while ago, we have learned that in the absence of charges and currents, all components

of the electric and magnetic fields obey the wave equation (E orB) = 0. Let’s see how this

works in the 4D language.

Taking the ∂λ derivative of the homogeneous Maxwell equation (73) and contracting the

index λ, we get

0 = ∂λ

(

∂λF µν + ∂µF νλ + ∂νF λµ
)

= F µν + ∂µ
(

∂λF
νλ
)

+ ∂ν
(

∂λF
λµ
)

〈〈 using the inhomogeneous Maxwell equation (80) for the last 2 terms 〉〉

= F µν + ∂µ
(

−
4π

c
Jν

)

+ ∂ν
(

+
4π

c
Jµ

)

(81)

and therefore

F µν =
4π

c

(

∂µJν − ∂νJµ
)

. (82)

In particular, in the absence of any electric charges or currents,

F µν(x) = 0. (83)

Covariant Maxwell equations for the 4–potential Aµ.

Expressing the EM tension field tensor F µν(x) in terms of the potential 4–vector Aµ(x)

as

F µν(x) = ∂µAν(x) − ∂νAµ(x) (84)

automagically solves the homogeneous Maxwell equation (73). Indeed, thanks to commuta-

tivity of the spacetime derivatives ∂µ∂ν = ∂ν∂µ, we have a total cancellation

∂λF µν + ∂µF νλ + ∂νF λµ =

= ∂λ
(

∂µAν − ∂νAµ
)

+ ∂µ
(

∂νAλ − ∂λAν
)

+ ∂ν
(

∂λAµ − ∂µAλ)

=
(

∂λ∂µ − ∂µ∂λ
)

Aν +
(

∂µ∂ν − ∂ν∂µ
)

Aλ +
(

∂ν∂λ − ∂λ∂ν
)

Aµ

= 0 + 0 + 0 = 0.

(85)

Conversely, if the homogeneous Maxwell equation (73) holds throughout the 4D spacetime,
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then all its solutions have form (84) for some potentials (84). This is a theorem of differential

geometry which generalizes B(x) = ∇×A(x) for some A(x) for any divergence-less B(x).

Now consider the inhomogeneous Maxwell equation (80) in terms of the 4–potential Aµ:

4π

c
Jν(x) = ∂µF

µν(x) = ∂µ

(

∂µAν(x) − ∂νAµ(x)
)

= Aν(x) − ∂ν
(

∂µA
µ(x)

)

. (86)

Note: the RHS here is gauge invariant, but the individual terms Aν and ∂ν(∂µA
µ) are not

invariant, so we may impose a gauge condition to simplify them. From the Lorentz-covariant

point of view, the best gauge condition is the Lorentz-invariant Landau gauge

∂µA
µ(x) = 0 (at all x). (87)

In this gauge, the the Maxwell equation (86) becomes simply

Aµ(x) =
4π

c
Jµ(x). (88)

We may formally solve this wave equation using a Green’s function. Of particular interest

is the retarded Green’s function

GR(x− y) =
1

2π
δ
(

(x− y)2
)

×Θ(x0 − y0) (89)

(where (x − y)2 = (x − y)µ(x − y)µ) which vanishes outside the future light cone, so the

potential

Aµ(x) =
2

c

∫

d4y Jµ(y)× δ
(

(x− y)2
)

×Θ(x0 − y0) (90)

generated by some current Jµ(y) exists only in the absolute future of that current. In

particular, for a point charge moving along some worldline xc(τ), the 4-current is

Jµ(y) = qc

∫

worldline

dτ uµ(τ)× δ(4)(y − xc(τ)), (91)

so the 4-potential generated by this moving charge is

Aµ(x) = 2q

∫

worldline

dτ uµ(τ)× δ
(

(x− xc(τ)
2
)

×Θ
(

x0 − x0c(τ
)

. (92)

I shall return to this Liénard–Wiechert potential — and the EM radiation it represents —
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in the last week of classes. Meanwhile, you can read the Wikipedia article on the subject.

Macroscopic Maxwell Equations

Let me conclude these notes by writing the macroscopic Maxwell equations

∇ ·D = 4πρ,

∇×E +
1

c

∂B

∂t
= 0,

∇ ·B = 0,

∇×H −
1

c

∂D

∂t
=

4π

c
J,

(93)

(Gauss units) in a Lorentz covariant form, although the relation between the E, B, D,

and H form would have to depend on the macroscopic medium’s velocity. Let me start by

introducing two antisymmetric Lorentz tensors, F µν(x) comprising the macroscopic E and

B fields, and Gµν comprising the D and H fields. The two tensors are constructed in a

similar way:

F ij = −ǫijkBk, F i0 = −F 0i = Ei, F 00 = 0, (94)

exactly like in the microscopic theory, and

Gij = −ǫijkHk, Gi0 = −G0i = Di, G00 = 0. (95)

Then, exactly like in the microscopic theory, the two homogeneous macroscopic Maxwell

equations become

∂λF µν + ∂µF νλ + ∂νF λµ = 0, (96)

while the two inhomogeneous macroscopic Maxwell equations become

∂µG
µν =

4π

c
Jν . (97)

The real issue here is writing a Lorentz-covariant relation between the F µν and Gµν

tensor fields and the 4–velocity uµ of the macroscopic medium. For simplicity, let’s assume
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that in the rest frame the medium is linear and isotropic, and there is no cross-coupling

between the electric and the magnetic fields. Instead, in the rest frame

D = ǫE and H =
1

µ
B (98)

for some dielectric constant ǫ and magnetic permeability µ (note Gauss units). In terms of

tensors Fαβ and Gαβ , eqs. (98) become

Gij =
1

µ
F ij but Gi0 = ǫF i0 and G0i = ǫF 0i. (99)

We see a difference between space and time indices here, and to make it look covariant, let’s

use the medium’s 4–velocity which in the rest frame is simply uµ = (c, 0, 0, 0). Consequently,

eqs. (97) become

Gαβ =
1

µ
Fαβ +

ǫµ− 1

µc2

(

uαuγF
γβ − uβuγF

γα
)

. (100)

Indeed, in the rest frame

uγF
γβ = cF 0β =

{

−cEj for β = j = 1, 2, 3,

0 for β = 0,
(101)

hence

uαuγF
γβ =

{

−c2Ej for α = 0 and β = j = 1, 2, 3,

0 for all other index combinations,
(102)
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and therefore Gαβ in eq. (100) becomes

Gij =
F ij

µ
+

ǫµ− 1

µc2
× (0− 0) =

F ij

µ

G0i =
F 0i = −Ei

µ
+

ǫµ− 1

µc2
× (−c2Ei − 0)

=

(

1

µ
+

ǫµ− 1

µ
= ǫ

)

× (−Ei) = ǫ× F 0i,

Gi0 =
F i0 = +Ei

µ
+

ǫµ− 1

µc2
× (0 + c2Ei)

=

(

1

µ
+

ǫµ− 1

µ
= ǫ

)

× (+Ei) = ǫ× F i0,

G00 =
F 00 = 0

µ
+

ǫµ − 1

µc2
× (0− 0) = 0,

(103)

in perfect agreement with eqs. (99) for the rest frame.

Since eq. (100) is Lorentz covariant, once we have established it in the rest frame of the

macroscopic medium, it should be valid in any other frame of reference, as long as we set uµ

to the medium’s 4–velocity. In 3D terms, eq. (100) in a moving medium becomes

D = ǫE +

(

ǫ −
1

µ

)

γ2
(

~β ×B − ~β(~β · E)
)

,

H =
B

µ
+

(

ǫ −
1

µ

)

γ2
(

~β × E + β × (β ×B)
)

.

(104)
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