
Basic Gaussian Integrals

Theorem: For any complex α with positive real part and any complex β,

+∞∫

−∞

dx exp
(
−α(x+ β)2

)
=

√
π

α
. (1)

Thanks to this theorem, the Fourier transform of a Gaussian wave packet is a Gaussian wave

packet: For the x-apace wave packet

Ψ(x) = Ψ0 × e+ik0x × exp

(
−(x− x0)

2

2a2

)
, (2)

where a2 can be complex as long as Re(a2) > 0, its k-space Fourier transform is

Ψ̃(k)
def
=

∫
dx e−ikx ×Ψ(x) =

√
2πaΨ0 × e−ix0(k−k0) × exp

(
−1

2a
2(k − k0)

2
)
. (3)

Indeed,

∫
dx e−ikx ×Ψ(x) =

=

∫
dxΨ0 × exp

(
−(x− x0)

2

2a2
+ ik0x − ikx

)

= Ψ0 exp(−ix0(k − k0))×
∫
dx exp

(
−(x− x0)

2

2a2
− i(k − k0)(x− x0)

)

= Ψ0 exp(−ix0(k − k0))×
∫
dx exp

(
−(x− x0 + ia2(k − k0))

2

2a2
− a2(k − k0)

2

2

)

= Ψ0 exp(−ix0(k − k0))× exp
(
−1

2a
2(k − k0)

2
)
×

×
∫
dx exp

(
−(x− x0 + ia2(k − k0))

2

2a2

)

(4)

where the integral on the last line evaluates to
√
2πa by the theorem (1).
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Likewise, a k-space wave packet

Ψ̃(k) = Ψ̃0 × e−ix0k × exp
(
−1

2a
2(k − k0)

2
)

(5)

Fourier transforms to

Ψ(x)
def
=

∫
dk

2π
e+ikx × Ψ̃(x) =

Ψ̃0√
2πa

× e+ik0(x−x0) × exp

(
−(x− x0)

2

2a2

)
. (6)

Application to Dispersion

Let’s apply the above math to the dispersion problem. Consider a 1-dimensional wave

Ψ(x, t) propagating through some dispersive media with a non-linear relation between wave

number k and the frequency ω(k). Suppose at time t0 = 0 we have a Gaussian wave packet

Ψ(x, 0) = Ψ0 × e+ik0x × exp

(
−(x− x0)

2

2a2

)
(7)

whose width a is muck larger than the wavelength 2π/k0. Fourier transforming this wave

packet to the k space, we get

Ψ̃(k, 0) =
√
2πaΨ0 × exp

(
−1

2a
2(k − k0)

2
)

(8)

— another Gaussian packet of width ∆k ∼ a−1 ≪ k0. Consequently, when we evolve this

packet to some future time t > 0, we get

Ψ̃(k, t) = e−iω(k)t × Ψ̃(k, 0) =
√
2πaΨ0 × e−iω(k)t × exp

(
−1

2a
2(k − k0)

2
)
, (9)

where for |k − k0| ≪ k0 we may approximate

ω(k) ≈ ω(k0) +
dω

dk
× (k − k0) +

1

2

d2ω

dk2
× (k − k0)

2. (10)
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Consequently,

Ψ̃(k, t) =
√
2πaΨ0 × exp

(
−a2

2
(k − k0)

2 − it

2

d2ω

dk2
(k − k0)

2 − it
dω

dk
(k − k0) − itω0

)

(11)

where the quadratic part of the exponent has a complex coefficient

C(t) = a2 + it
d2ω

dk2
. (12)

In other words,

Ψ̃(k, t) =
√
2πaΨ0 × e−ivgt(k−k0)e−iω0t × exp

(
−1

2C(t)× (k − k0)
2
)

(13)

where vg = (dω/dk) is the group velocity of the wave. The wave packet (13) has the form of

eq. (8)for x0 = vgt and C(t) instead of a2, so Fourier transforming it back to x space yields

the packet of the form (2), namely

Ψ(x, t) =
aΨ0√
C(t)

× eik0x−iω0t × exp

(
−(x− vgt)

2

2C(t)

)
. (14)

We see that the wave pulse indeed moves to the right at the group velocity vg, but at the

same time its width increases with C(t). Specifically, taking the magnitude2 of the wave, we

have

|Ψ(x, t)|2 =
a2|Ψ0|2
|C(t)| × exp

(
−(x− vgt)

2 × Re

(
1

C(t)

))
, (15)

where

Re

(
1

C(t)

)
=

a2

a4 + (ω′′)2t2
, ω′′ being

d2ω

dk2
. (16)

Thus, the time-dependent width of the wave pulse is

b(t) =
1√

Re(C−1)
=

√
a2 +

(ω′′)2

a2
t2 (17)

— as promised, it increases with time for ω′′ 6= 0. Thus we see that ω′′ 6= 0 causes the wave

pulse to disperse in space, and that’s why the non-linear relation between k and ω is called

the dispersion.
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Besides the increasing pulse width, the peak amplitude of the wave pulse decreases with

time as

a√
|C(t)|

=
a

b(t)
. (18)

To illustrate this effect, let me plot the magnitude of the pulse as a function of x at several

times t = 0, 1, 2, 3, 4 (in units of a2/|ω′′|):

x

|Ψ|2

The dispersion limits the pulse rate — and hence the information transfer rate — in long

transmission lines, from 19th century telegraph cables to modern fiber optic cables. Indeed,

whatever the initial pulse width a, by the time the pulse reaches the end of the line at time

T = L/vg, its width b(T ) must be shorter than the space interval between the pulses, or else

we would not be able to resolve them from each other. In terms of the pulse rate

ν =
1

times between pulses
, (19)

we need

vg
ν

> b(T ) (20)

and hence

v2g
ν2

> b2(T ) = a2 +
(ω′′)2T 2

a2
. (21)

For a given travel time T , the RHS here is minimized for a2 = |ω′′|T , thus even for this
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optimal width of the initial pulse, we need

v2g
ν2

> 2|ω′′| × T. (22)

In other words, the pulse rate cannot be faster than

νmax =
vg√

2|ω′′| × T
, (23)

and that’s why it’s important to keep the dispersion ω′′ in transmission lines as small as

possible.

In terms of the refraction index n(ω), the group velocity

vg =
dω

dk
=

c

n+ ω(dn/dω)
, (24)

hence

ω′′ def
=

d2ω

dk2
=

dω

dk
× d

dω

(
dω

dk

)
= vg ×

dvg
dω

=
v3g
c

× d

dω

(
− c

vg

)
= −

v3g
c

×
(
2
dn

dω
+ ω

d2n

dω2

)
,

(25)

and therefore

ν2max =
v2g

2|ω′′| ×
(
1

T
=

vg
L

)
=

c

2L

/ ∣∣∣∣2
dn

dω
+ ω

d2n

dω2

∣∣∣∣ . (26)

Thus, to maximize the pulse rate ν, we should endeavor to keep the refraction index n(ω)

as constant as possible.
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