Basic Gaussian Integrals

Theorem: For any complex α with positive real part and any complex β,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d x \exp \left(-\alpha(x+\beta)^{2}\right)=\sqrt{\frac{\pi}{\alpha}} \tag{1}
\end{equation*}
$$

Thanks to this theorem, the Fourier transform of a Gaussian wave packet is a Gaussian wave packet: For the x-apace wave packet

$$
\begin{equation*}
\Psi(x)=\Psi_{0} \times e^{+i k_{0} x} \times \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}\right) \tag{2}
\end{equation*}
$$

where a^{2} can be complex as long as $\operatorname{Re}\left(a^{2}\right)>0$, its k-space Fourier transform is

$$
\begin{equation*}
\widetilde{\Psi}(k) \stackrel{\text { def }}{=} \int d x e^{-i k x} \times \Psi(x)=\sqrt{2 \pi} a \Psi_{0} \times e^{-i x_{0}\left(k-k_{0}\right)} \times \exp \left(-\frac{1}{2} a^{2}\left(k-k_{0}\right)^{2}\right) . \tag{3}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
& \int d x e^{-i k x} \times \Psi(x)= \\
& =\int d x \Psi_{0} \times \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}+i k_{0} x-i k x\right) \\
& =\Psi_{0} \exp \left(-i x_{0}\left(k-k_{0}\right)\right) \times \int d x \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}-i\left(k-k_{0}\right)\left(x-x_{0}\right)\right) \\
& =\Psi_{0} \exp \left(-i x_{0}\left(k-k_{0}\right)\right) \times \int d x \exp \left(-\frac{\left(x-x_{0}+i a^{2}\left(k-k_{0}\right)\right)^{2}}{2 a^{2}}-\frac{a^{2}\left(k-k_{0}\right)^{2}}{2}\right) \\
& =\Psi_{0} \exp \left(-i x_{0}\left(k-k_{0}\right)\right) \times \exp \left(-\frac{1}{2} a^{2}\left(k-k_{0}\right)^{2}\right) \times \\
& \times \int d x \exp \left(-\frac{\left(x-x_{0}+i a^{2}\left(k-k_{0}\right)\right)^{2}}{2 a^{2}}\right) \tag{4}
\end{align*}
$$

where the integral on the last line evaluates to $\sqrt{2 \pi} a$ by the theorem (1).

Likewise, a k-space wave packet

$$
\begin{equation*}
\widetilde{\Psi}(k)=\widetilde{\Psi}_{0} \times e^{-i x_{0} k} \times \exp \left(-\frac{1}{2} a^{2}\left(k-k_{0}\right)^{2}\right) \tag{5}
\end{equation*}
$$

Fourier transforms to

$$
\begin{equation*}
\Psi(x) \stackrel{\text { def }}{=} \int \frac{d k}{2 \pi} e^{+i k x} \times \widetilde{\Psi}(x)=\frac{\widetilde{\Psi}_{0}}{\sqrt{2 \pi} a} \times e^{+i k_{0}\left(x-x_{0}\right)} \times \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}\right) . \tag{6}
\end{equation*}
$$

Application to Dispersion

Let's apply the above math to the dispersion problem. Consider a 1-dimensional wave $\Psi(x, t)$ propagating through some dispersive media with a non-linear relation between wave number k and the frequency $\omega(k)$. Suppose at time $t_{0}=0$ we have a Gaussian wave packet

$$
\begin{equation*}
\Psi(x, 0)=\Psi_{0} \times e^{+i k_{0} x} \times \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 a^{2}}\right) \tag{7}
\end{equation*}
$$

whose width a is muck larger than the wavelength $2 \pi / k_{0}$. Fourier transforming this wave packet to the k space, we get

$$
\begin{equation*}
\widetilde{\Psi}(k, 0)=\sqrt{2 \pi} a \Psi_{0} \times \exp \left(-\frac{1}{2} a^{2}\left(k-k_{0}\right)^{2}\right) \tag{8}
\end{equation*}
$$

- another Gaussian packet of width $\Delta k \sim a^{-1} \ll k_{0}$. Consequently, when we evolve this packet to some future time $t>0$, we get

$$
\begin{equation*}
\widetilde{\Psi}(k, t)=e^{-i \omega(k) t} \times \widetilde{\Psi}(k, 0)=\sqrt{2 \pi} a \Psi_{0} \times e^{-i \omega(k) t} \times \exp \left(-\frac{1}{2} a^{2}\left(k-k_{0}\right)^{2}\right), \tag{9}
\end{equation*}
$$

where for $\left|k-k_{0}\right| \ll k_{0}$ we may approximate

$$
\begin{equation*}
\omega(k) \approx \omega\left(k_{0}\right)+\frac{d \omega}{d k} \times\left(k-k_{0}\right)+\frac{1}{2} \frac{d^{2} \omega}{d k^{2}} \times\left(k-k_{0}\right)^{2} . \tag{10}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\widetilde{\Psi}(k, t)=\sqrt{2 \pi} a \Psi_{0} \times \exp \left(-\frac{a^{2}}{2}\left(k-k_{0}\right)^{2}-\frac{i t}{2} \frac{d^{2} \omega}{d k^{2}}\left(k-k_{0}\right)^{2}-i t \frac{d \omega}{d k}\left(k-k_{0}\right)-i t \omega_{0}\right) \tag{11}
\end{equation*}
$$

where the quadratic part of the exponent has a complex coefficient

$$
\begin{equation*}
C(t)=a^{2}+i t \frac{d^{2} \omega}{d k^{2}} \tag{12}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\widetilde{\Psi}(k, t)=\sqrt{2 \pi} a \Psi_{0} \times e^{-i v_{g} t\left(k-k_{0}\right)} e^{-i \omega_{0} t} \times \exp \left(-\frac{1}{2} C(t) \times\left(k-k_{0}\right)^{2}\right) \tag{13}
\end{equation*}
$$

where $v_{g}=(d \omega / d k)$ is the group velocity of the wave. The wave packet (13) has the form of eq. (8)for $x_{0}=v_{g} t$ and $C(t)$ instead of a^{2}, so Fourier transforming it back to x space yields the packet of the form (2), namely

$$
\begin{equation*}
\Psi(x, t)=\frac{a \Psi_{0}}{\sqrt{C(t)}} \times e^{i k_{0} x-i \omega_{0} t} \times \exp \left(-\frac{\left(x-v_{g} t\right)^{2}}{2 C(t)}\right) \tag{14}
\end{equation*}
$$

We see that the wave pulse indeed moves to the right at the group velocity v_{g}, but at the same time its width increases with $C(t)$. Specifically, taking the magnitude ${ }^{2}$ of the wave, we have

$$
\begin{equation*}
|\Psi(x, t)|^{2}=\frac{a^{2}\left|\Psi_{0}\right|^{2}}{|C(t)|} \times \exp \left(-\left(x-v_{g} t\right)^{2} \times \operatorname{Re}\left(\frac{1}{C(t)}\right)\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1}{C(t)}\right)=\frac{a^{2}}{a^{4}+\left(\omega^{\prime \prime}\right)^{2} t^{2}}, \quad \omega^{\prime \prime} \text { being } \frac{d^{2} \omega}{d k^{2}} \tag{16}
\end{equation*}
$$

Thus, the time-dependent width of the wave pulse is

$$
\begin{equation*}
b(t)=\frac{1}{\sqrt{\operatorname{Re}\left(C^{-1}\right)}}=\sqrt{a^{2}+\frac{\left(\omega^{\prime \prime}\right)^{2}}{a^{2}} t^{2}} \tag{17}
\end{equation*}
$$

- as promised, it increases with time for $\omega^{\prime \prime} \neq 0$. Thus we see that $\omega^{\prime \prime} \neq 0$ causes the wave pulse to disperse in space, and that's why the non-linear relation between k and ω is called the dispersion.

Besides the increasing pulse width, the peak amplitude of the wave pulse decreases with time as

$$
\begin{equation*}
\frac{a}{\sqrt{|C(t)|}}=\frac{a}{b(t)} \tag{18}
\end{equation*}
$$

To illustrate this effect, let me plot the magnitude of the pulse as a function of x at several times $t=0,1,2,3,4$ (in units of $\left.a^{2} /\left|\omega^{\prime \prime}\right|\right)$:

The dispersion limits the pulse rate - and hence the information transfer rate - in long transmission lines, from $19^{\text {th }}$ century telegraph cables to modern fiber optic cables. Indeed, whatever the initial pulse width a, by the time the pulse reaches the end of the line at time $T=L / v_{g}$, its width $b(T)$ must be shorter than the space interval between the pulses, or else we would not be able to resolve them from each other. In terms of the pulse rate

$$
\begin{equation*}
\nu=\frac{1}{\text { times between pulses }} \tag{19}
\end{equation*}
$$

we need

$$
\begin{equation*}
\frac{v_{g}}{\nu}>b(T) \tag{20}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{v_{g}^{2}}{\nu^{2}}>b^{2}(T)=a^{2}+\frac{\left(\omega^{\prime \prime}\right)^{2} T^{2}}{a^{2}} \tag{21}
\end{equation*}
$$

For a given travel time T, the RHS here is minimized for $a^{2}=\left|\omega^{\prime \prime}\right| T$, thus even for this
optimal width of the initial pulse, we need

$$
\begin{equation*}
\frac{v_{g}^{2}}{\nu^{2}}>2\left|\omega^{\prime \prime}\right| \times T \tag{22}
\end{equation*}
$$

In other words, the pulse rate cannot be faster than

$$
\begin{equation*}
\nu_{\max }=\frac{v_{g}}{\sqrt{2\left|\omega^{\prime \prime}\right| \times T}} \tag{23}
\end{equation*}
$$

and that's why it's important to keep the dispersion $\omega^{\prime \prime}$ in transmission lines as small as possible.

In terms of the refraction index $n(\omega)$, the group velocity

$$
\begin{equation*}
v_{g}=\frac{d \omega}{d k}=\frac{c}{n+\omega(d n / d \omega)}, \tag{24}
\end{equation*}
$$

hence

$$
\begin{align*}
\omega^{\prime \prime} & \stackrel{\text { def }}{=} \frac{d^{2} \omega}{d k^{2}}=\frac{d \omega}{d k} \times \frac{d}{d \omega}\left(\frac{d \omega}{d k}\right)=v_{g} \times \frac{d v_{g}}{d \omega} \\
& =\frac{v_{g}^{3}}{c} \times \frac{d}{d \omega}\left(-\frac{c}{v_{g}}\right)=-\frac{v_{g}^{3}}{c} \times\left(2 \frac{d n}{d \omega}+\omega \frac{d^{2} n}{d \omega^{2}}\right), \tag{25}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\nu_{\max }^{2}=\frac{v_{g}^{2}}{2\left|\omega^{\prime \prime}\right|} \times\left(\frac{1}{T}=\frac{v_{g}}{L}\right)=\frac{c}{2 L} /\left|2 \frac{d n}{d \omega}+\omega \frac{d^{2} n}{d \omega^{2}}\right| . \tag{26}
\end{equation*}
$$

Thus, to maximize the pulse rate ν, we should endeavor to keep the refraction index $n(\omega)$ as constant as possible.

