
SPACETIME GEOMETRY

The two Einstein postulates — the universality of Physics Laws in all inertial frames, and

the universality of light speed in the vacuum in all inertial frames — are inconsistent with the

universality of Time. Instead, the time must run at different rates in different inertial frames.

Moreover, the relation between the times in some frames K and K ′ cannot be a relation

between the two times alone, t′ = f(t), but must also involve the space coordinates, thus t′ =

f(t, x, y, z): Otherwise, the symmetry between the two frames K and K ′ would force t′ = t.

Therefore, changing a frame of reference mixes the time and the space coordinates with each

other, just like a rotation mixes up the space coordinates with each other. Mathematically,

this means that the 3D space and the time combine into the 4D spacetime, and changing the

frame of reference amounts to a 4D coordinate transform in that spacetime.

Specifically, for the inertial frames K and K ′ moving at velocity u relative to each other

in x direction, the spacetime coordinate transform — called the Lorentz transform or the

Lorentz boost — works according to

x′ = γ(x− ut), y′ = y, z′ = z, t′ = γ
(

t −
u

c2
x
)

(1)

in one direction, and

x = γ(x′ + ut′), y = y′, z = z′, t = γ
(

t′ +
u

c2
x′
)

(2)

in the opposite direction. For both directions,

γ =
1

√

1− (u/c)2
. (3)

The direct and the reverse Lorentz transforms look completely similar (except for the sign

of u) — in particular, they both have ∂t′/∂t = γ > 1 and ∂t/∂t′ = γ > 1, — but once we

apply them to a physical body which is at rest in one frame but moves in the other frame,

we break the symmetry between the direct and the reverse transform. Consequently, we find
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that in the rest frame of a body, its time runs slower than in any other frame. Indeed, in

the rest frame xrest ≡ 0, hence in the lab frame where the body is moving at velocity v,

tlab = γv

(

trest +
v

c2
× xrest

)

= γv × trest =
trest

√

1− (v/c)2
. (4)

This is the famous relativistic time dilation.

Note: the reverse transform from the lab frame to the rest frame looks different because

in the lab frame xlab = v × tlab, hence

trest = γv

(

tlab −
v

c2
× (xlab = vtlab)

)

= γv×

(

1 −
v2

c2

)

×tlab =
√

1− (v/c)2×tlab . (5)

Thus, both directions of the Lorentz transform produce the same result: the time in the rest

frame runs slower than the time in the lab frame.

Similar arguments apply to the Lorentz contraction of length: a body viewed in the frame

where it moves looks shorter than it is in its rest frame. To see how this works, note that

the length of a body is the distance between its ends at the same instance of time. Thus, in

the lab frame where the body moves at velocity v,

x
(1)
lab = v × tlab , x

(2)
lab = v × tlab + Llab , (6)

so that

x
(2)
lab(tlab) − x

(1)
lab(tlab) = Llab ∀tlab . (7)

In the rest frame, this translates to

x
(1)
rest = γv(x

(1)
lab − vtlab) = 0, x

(2)
rest = γv(x

(2)
lab − vtlab) = γv × Llab (8)

hence Lrest = γv × Llab, or equivalently the Lorentz contraction

Llab =
Lrest

γv
=

√

1− (v/c)2 × Lrest < Lrest . (9)

The reverse transform yields the same result — the length is shorter in the lab frame —

but to see it we need to pay attention to the simultaneity of the two ends. Indeed, given
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x
(1)
rest ≡ 0 and x

(2)
rest ≡ Lrest, we get

x
(1)
lab = γvv × t

(1)
rest , x

(2)
lab = γv × Lrest + γvv × t

(2)
rest , (10)

where the times t
(1)
rest and t

(2)
rest must be chosen such that the corresponding lab-frame times

t
(1)
lab = γv × t

(1)
rest and t

(2)
lab = γv × t

(2)
rest +

γvv

c2
× Lrest (11)

are equal to each other. Thus,

t
(2)
rest − t

(1)
rest = −

v

c2
× Lrest (12)

and hence

Llab = x
(2)
lab − x

(1)
lab = γv × Lrest + γvv

(

t
(2)
rest − t

(1)
rest

)

= γv ×

(

1 −
v2

c2

)

× Lrest =
√

1− (v/c)2 × Lrest < Lrest .
(13)

Next consider the relativistic velocity addition. Suppose a body moves at velocity v′

relative to the frame K ′, which in turn moves at velocity u relative to the frame K. Then

the body’s velocity v relative to the frame K is not u+ v′ but given by a more complicated

formula. In these notes, I’ll write this formula for u and v′ being in the same direction x (or

in the opposite directions for v′ < 0); the more general case is a part of your next homework.

In the K ′ frame x′ = v′ × t′. Translating these spacetime coordinates to the K frame,

we get

x = γu(x
′ + u× t′) = γu × (v′ + u)× t′,

t = γu

(

t′ +
u

c2
× x′

)

= γu ×

(

1 +
uv′

c2

)

× t′,
(14)

and therefore

x =
u+ v′

1 + uv′

c2

× t. (15)

This gives us the body’s velocity v relative to the K frame as

v =
u+ v′

1 + (uv′/c2)
. (16)

This velocity addition formula may look strange, but that’s what it takes to implement
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Einstein’s second postulate. Indeed, for the light which moves at velocity v′ = ±c relative

to the frame K ′, it’s velocity v relative to the K frame is also

v =
u± c

1 ± (u/c)
= ±c. (17)

Geometrically, the Lorentz transform between the frames K and K ′ becomes a pseudo–

Euclidean rotation of the x and t coordinate axes:

x

t

x′

t′light front light front

Note that the transform (x, t) → (x′, t′) tilts the two coordinate axes towards the same

diagonal rather that rotates both of them in the same direction — that’s why we call it

pseudo–Euclidean.

The reason we compare a Lorentz transform to a rotation is that they both preserve a

quadratic invariant: A Euclidean rotation in the (x, y) plane

x′ = cos φ× x − sin φ× y, y′ = cosφ× y + sinφ× x (18)
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preserves the radius2,

r2 = x2 + y2 = x′2 + y′2, (19)

while the Lorentz boost in the x direction preserves the so-called interval2,

I2 = c2t2 − x2 = c2t′2 − x′2. (20)

Indeed,

I ′2 = c2t′2 − x′2

= c2γ2
(

t −
v

c2
× x

)2
− γ2(x− vt)2

= γ2
[(

c2 × t2 − 2t× vx +
v2

c2
× x2

)

−
(

x2 − 2x× vt + v2t2
)

]

= γ2(c2 − v2)× t2 + 0× xt + γ2
(

v2

c2
− 1

)

× x2

= γ2
(

1 −
v2

c2

)

× (c2t2 − x2)

= 1× (c2t2 − x2) = I2.

(21)

But the minus sign between (ct)2 and x2 in the definition of the invariant interval makes the

spacetime geometry pseudo–Euclidean — also called Minkowski — rather than Euclidean.

Before we go any further with the Minkowski geometry, let’s include all 3 dimensions of

space and hence all 4 dimensions of spacetime. In 3–vector terms, the Lorentz boost between

2 inertial frames moving at velocity u relative to each other becomes

x′ = x⊥ + γux‖ − γuu t

= x +
γu − 1

u2
(x · u)u − γuu t ,

t′ = γu

(

t −
u · x

c2

)

,

(22)

and all such boosts preserve the (3 + 1)–dimensional interval2

I2 = (ct)2 − x2 = (ct)2 − x2 − y2 − z2. (23)

Actually, a better definition of the interval involves a pair of events, i.e., spacetime points

— one at time t1 and location x1 and the other at time t2 and location x2. The interval I12
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between two such events is defined as

I212 = c2(t2−t1)
2 − (x2−x2)

2 = c2(t2−t1)
2 −(x2−x1)

2 − (y2−y1)
2 − (z2−z1)

2, (24)

and just like in eq. (23), this interval is the same in all reference frames. Mathematically,

this is similar to the distance2 = (x2−x1)
2+(y2−y1)

2+(z2−z1)
2 between two space points

being the same in all coordinate systems.

But unlike the Euclidean distance, the interval2 is not positive-definite, so there are 3

kinds of intervals according to the sign of I2:

• timelike intervals I212 > 0 with c|t2 − t1| > |x2 − x1|;

• spacelike intervals I212 < 0, with c|t2 − t1| < |x2 − x1|;

• lightlike intervals I212 = 0, with c|t2 − t1| = |x2 − x1|.

Theorem: For two events with a timelike or lightlike interval between them, their time order

— which is later than which — is the same in all frame of reference. But for a spacelike

interval between two events, their time order depends on the frame of reference, t2 > t1 in

one frame but t′2 < t′1 in another frame.

Proof: Let ∆t = t2 − t1 and ∆x = x2 − x2 in some frame of reference K. Then in another

frame K ′ moving at velocity u relative to K,

∆t′ = γu

(

∆t −
u

c2
·∆x

)

. (25)

Suppose the interval (∆t,∆x) is timelike or lightlike, c2∆t2 ≥ ∆x2. Then for any speed u

slower than light
∣

∣

∣

u

c2
·∆x

∣

∣

∣
≤

u

c
×

|∆x|

c
< 1× |∆t|, (26)

hence

sign(∆t′) = sign
(

∆t −
u

c2
·∆x

)

= sign(∆t). (27)

Thus, for a timelike (or lightlike) interval between two events, their time order — either

∆t > 0 and (2) is later than (1) or else ∆t < 0 and (2) is earlier tan (1) — is the same in all

frames of reference. Such frame-independent time order is called absolute.
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Now consider a spacelike interval (∆t,∆x) with c‖∆t| < |∆x| in some frame K. Let

u0 =
c2|∆t|

|∆x|
. (28)

For a spacelike interval u0 < c, so another frame k′ may move faster than u0 relative to

K. Specifically, let’s pick the K ′ frame which moves at speed u > u0 in the direction of

sign(∆t)∆x, then

u · x

c2
= sign(∆t)×

u |∆x|

c2
= sign(∆t)×

u

u0
×

(

u0|∆x

c2
= |∆t|

)

=
u

u0
×∆t. (29)

Consequently, in the K ′ frame the time difference

∆t′ = γu

(

∆t −
u

c2
·∆x

)

(30)

becomes

∆t′ = γu

(

1 −
u

u0

)

×∆t , (31)

and since u > u0, this ∆t
′ has the opposite sign from the ∆t! Thus, if in the original frame

K the event (2) happens later than the event (1), ∆t > 0, then in the K ′ frame ∆t′ < 0 and

the event (2) happens before the event (1). Likewise, if in the K frame (2) happens before

(1) then in the K ′ frame (2) happens after (1). Either way, the time order of the events (1)

and (2) is different in different reference frames; such frame-dependent time order is called

relative.

Events at lightlike intervals from a given event (t0,x0) form a double cone in spacetime

t = t0 ±
|x− x0|

c
(32)

called the light cone. Physically, the light cone is spanned by all the light rays beginning

or ending at point x0 at time t0, hence the name. The light cone is invariant under all
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Lorentz transforms (this is the second Einstein postulate), and it divides the spacetime into

3 causally distinct regions:

x, y, z

tlight come light cone

absolute future

absolute past

relative

past/future

relative

past/future

• The absolute future region

t > t0 +
|x− x0|

c
(33)

comprises events which are later than (t0,x0) in all frames of reference.

• Likewise, the absolute past region

t < t0 −
|x− x0|

c
(34)

comprises events which are earlier than (t0,x0) in all frames of reference.

• Finally, the relative past/future region

t0 −
|x− x0|

c
< t < t0 +

|x− x0|

c
(35)

which are can be earlier or later than (t0,x0) depending on a reference frame.
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∗ For example, consider an event which happens in α Centauri system in the year 2000

by the Earthly calendar. Relative to that event, Earth history prior to 1996 is absolute

past, Earth history after 2004 is absolute future, but the 8 year period between 1996

and 2004 is relative past/future. For example, a 1999 event on Earth happens earlier

than that α Centauri event in the frame of the Earth (or of the α Centauri), but in

the frame of a spaceship flying from Earth to α Centauri at speed u > 1
4c the 1999

event on Earth would happen later than the 2000 event on α Centauri.

◦ Here is a better picture of the light cones.

Causality means that an even in the past can cause or influence an event in the future but

not the other way around: the future cannot influence the past. Relativistically, causality

has to work in all reference frames, so if the time order of two events is frame-dependent,

then neither even can cause influence the other. Thus, relativistic causality means that an

event may cause or influence other events only in its absolute future. Likewise, and event can

be caused or influenced only by events in its absolute past. In terms of signals communicating

between events, no signal can travel faster than light in vacuum, because the time order of

sending and receiving such a signal would be frame-dependent:

for x2 − x1 = v(t2 − t1) and |v| > c, I212 < 0, (36)

and a spacelike interval between (1) and (2) means frame-dependent time order. Moreover,

since any material body can act as a signal, no material body can travel faster than light in

vacuum.

The relativistic causality is often called the third Einstein postulate, usually stated as no

material body nor any information can travel faster than the light in vacuum in any reference

frame.

Worldlines: In spacetime terms, a moving particle spans a continuous family of events

(t,x(t)) parametrized by the time coordinate t; geometrically, this family is a line in 4D

spacetime called the worldline. For a particle moving at constant velocity v the worldline

is straight, while for an accelerating particle the worldline is curved. Here is an example
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worldline for a particle oscillating in x direction:

x

t

For massive particles or any macroscopic bodies, the velocity dx/dt is always slow than the

speed of light, so the infinitesimal intervals (dt, dx) along the worldline are always timelike,

dI2 = c2dt2 − x2 = (c2 − v2)dt2 > 0. (37)

In the frame which happens to move at the same velocity v(t0) as the particle at the moment

t0, the interval
2 is simply c2dt′2, so up to the overall factor c, the infinitesimal interval dI is the

infinitesimal time in the particle’s rest frame. If we replace the particle with a macroscopic

body equipped with its own clock, then this clock would measure time

dτ =
dI

c
=

√

1− (v/c)2 × dt. (38)

This time τ is called the proper time of the moving body/particle, and for a body moving at

a variable velocity, the proper time obtains as an integral

τ =

∫

dt
√

1 − v2(t)/c2 , (39)
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or in worldline terms,

τ =

∫

worldline

√

(dt)2 −
1

c2
(dx)2 . (40)

Macroscopically, all processes on board a spaceship — from the clocks in shipboard computers

to the astronauts’ aging — happen according to the proper time of the ship. Even with

today’s non-relativistic technology, the clocks on GPS satellites run according the proper

time, and the clock rate has to be corrected to keep those clocks synchronized with the

ground-based clocks. Microscopically, the atomic transitions have definite frequencies WRT

to the proper time of a moving atom rather than the lab-frame time. Likewise, the lifetimes

of unstable particles are in terms of the proper time of the moving particle. For example,

the average lifetime of a muon is 2 microseconds of its proper time, but for a muon traveling

at speed v = 0.9998 c, dτ ≈ 0.02 dt, so 2 µs of proper time stretch to 100 µs, time enough

to travel 30 km from the stratosphere to the ground.

4–VECTORS

The 4 spacetime coordinates of an event can be combined into a 4–vector

xµ = (x0, x1, x2, x3) = (ct, x, y, z). (41)

Other combinations of a 3–scalar and a 3–vector which transform similarly under Lorentz

transformations also form 4–vector; we shall see quite a few examples in the remaining 2

weeks of this class. But before we go there, let me fix the notation conventions.

• The components of a 4–vector like xµ are indexed by lower-case Greek letters, usually

from the middle of the alphabet — µ and ν labels are particularly common. The Latin

indices i, j, k, ℓ are used for components of 3–vectors rather than 4–vectors.

• The 4–vector indices µ, ν, . . . take values 0, 1, 2, 3. The (A1, A2, A3) components of a

4–vector Aµ comprise a 3–vector A, and under rotations of the 3D space they indeed

behave as components of a 3–vector. The A0 component is invariant under space

rotations, so it’s a 3–scalar.

11



• A 4–vector index can be upper or lower, and it makes a difference, Aµ 6= Aµ. It’s

possible to trade an upper index for a lower index or vice verse — and in a moment

I’ll explain how, — but this changes the components and not just the typography!

⋆ Einstein summation convention: If in a product of 4–vectors or tensors the same index

appears twice — once upstairs and once downstairs — than there is implicit summation

over that index. For example,

AµBµ =
∑

µ=0,1,2,3

AµBµ . (42)

However, there is no implicit summation over two similar upper indices, or two similar

lower indices, or indices appearing more then twice. In all such cases, you should

explicitly indicate where you want that index to be summed over or not. Although

most commonly, such malformed indices are simply typos and need to be corrected.

In 3D vector notations, a rotation of the coordinate system can be summarized as x′i =

Rijxj for some orthogonal 3×3 matrix Rij . Likewise, a Lorentz transform of the 4 spacetime

coordinates can be summarized in 4–vector notations as x′µ = Lµ
νx

ν for some pseudo-

orthogonal 4 × 4 matrix Lµ
ν . For example, for a Lorentz boost of velocity v in the x1

direction








x′0

x′1

x′2

x′3









=









γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

















x0

x1

x2

x3









(43)

where

β =
v

c
and γ =

1
√

1− β2
. (44)

or in terms of explicit matrix elements,

L0
0 = L1

1 = γ, L0
1 = L1

0 − = −βγ, L2
2 = L3

3 = 1, other Lµ
ν = 0. (45)

The components of all other 4–vectors — also called Lorentz vectors — must transform

exactly like the coordinates xµ = (ct, x1, x2, x3), namely A′µ = Lµ
νA

ν for exactly the same
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Lµ
ν matrix as the coordinates. Otherwise, it would not be a Lorentz vector but just an array

of 4 numbers.

Let’s make another parallel between 3–vectors and 4–vectors. Rotations of 3-space leave

invariant the length2 of any vectors, or more generally a dot product of any two vectors,

a · b = a1b1 + a2b2 + a3b3 = a′1b
′
1 + a′2b

′
2 + a′3b

′
3 . (46)

Likewise, the Lorentz transforms leave invariant the interval2, or similar quadratic combina-

tion of other 4–vectors like

(A)2 = (A0)2 − (A1)2 − (A2)2 − (A3)2 = (A′0)2 − (A′1)2 − (A′2)2 − (A′3)2. (47)

or more generally, the Lorentzian dot product or any two 4–vectors

(A ·B) = A0B0 − A1B1 − A2B2 − A3B3 = A′0B′0 − A′1B′1 − A′2B′2 − A′3B′3. (48)

In index notations,

(A · B) = AµgµνB
ν (49)

where gµν is the metric tensor,

g00 = +1, g11 = g22 = g33 = −1, and for µ 6= ν gµν = 0, (50)

or in matrix form,

gµν =









+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1









. (51)

Note: the metric tensor is invariant under Lorentz transforms, just like the Kronecker δij

tensor is invariant under space rotations.
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As a matrix (51), the metric tensor squares to one, so its matrix inverse g−1 is the same

as g. But in order to properly contract the Lorentz indices, the inverse metric tensor is

written as

gµν =









+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1









. (52)

with upper rather than lower indices, so that we may express the matrix relation gg = 1 as

gλµgµν = δλν .

The metric tensor and its inverse allow us to raise and lower the Lorentz indices of

4–vectors and tensors according to

Aµ = gµνA
ν , Aλ = gλµAµ , (53)

Since gµν and g
µν are diagonal matrices with eigenvalues (+1,−1,−1,−1), raising or lowering

a Lorentz index amounts to a simple sign rule: keep the time component the same but change

the signs of the space components,

A0 = +A0, but A1 = −A1, A2 = −A2, A3 = −A3, (54)

for example,

xµ = (+ct,+x,+y,+z) but xµ = (+ct,−x,−y,−z). (55)

Sign convention: whenever a 3–scalar A0 and a 3–vector A combine into a 4–vector, we

identify the (Ax, Ay, Az) components of the 3-vector as the (A1, A2, A3) components of the

4–vector Aµ with an upper rather than lower index, thus

Aµ = (A0, Ax, Ay, Az) but Aµ = (A0,−Ax,−Ay,−Az). (56)

This sign convention works for most 4–vectors, except for the derivative 4-vector which

combines the space derivative vector ∇ with the time derivative. For the derivative vector

14



we let

∂µ =

(

1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

while ∂µ =

(

1

c

∂

∂t
,−

∂

∂x
,−

∂

∂y
,−

∂

∂z

)

(57)

so that

∂µx
ν = +δνµ =

{

+1 for µ = ν,

0 for µ 6= ν.
(58)

Raising and/or lowering the µ and ν indices here we also get

∂µxν = gµν , ∂µxν = gµν , and ∂µxν = δµν . (59)

I’ll come back to the derivative 4-vector in a moment, but first let me get to the whole point

of raising or lowering the 4–vector indices: It allows writing the Lorentzian dot product in a

more compact form

(A · B) = AµgµνB
ν = AµBµ = AνB

ν . (60)

(We may also write (A ·B) as Aµg
µνBν , although that would not be any more compact than

AµgµνB
ν .)

I have already mentioned the Lorentz invariance of the metric tensor and hence of the

dot product of two Lorentz vectors. This invariance serves as the very definition of the

Lorentz group O(3, 1) (where (3, 1) stand for 3 dimensions of space and 1 of time). This

symmetry group comprises all 4 × 4 matrices Lµ
ν — or equivalently, all linear transforms

xµ → x′µ = Lµ
νx

ν — which preserve the Lorentzian dot product (49). In index notations,

this means

(A′ · B′) = A′µgµνB
′ν = (Lµ

αA
α)gµν(L

ν
βB

β) = Aα(gµνL
µ
αL

ν
β)B

β (61)

should be equal to

(A · B) = AαgαβB
β (62)

15



for any two 4–vectors Aα and Bβ, which obviously calls for

gµνL
µ
αL

ν
β = gαβ . (63)

Or in indexless matrix notations

L ∈ O(3, 1) if and only if L⊤gL = g (64)

where L⊤ is the transposed matrix L. By comparison, in Euclidean spaces the orthogonal

O(D) matrices R satisfy R⊤R = 1, which may also be written in the form (64) for the

Euclidean metric g = 1D×D.

I do not gave the class-time to go into the group theory of the Lorentz group defined

by the matrix condition (64). Instead, let me simply state without proof that it is indeed

a group — a matrix product of two Lorentz symmetries is itself a Lorentz symmetry, and

so is the matrix inverse of any Lorentz symmetry, — and briefly describe its content. The

Lorentz group O(3, 1) includes both continuous and discrete symmetries. The continuous

subgroup SO+(3, 1) (called the continuous Lorentz group) comprises:

1. All rotations of the 3D space (any angle, any axis).

2. All Lorentz boosts (any speed v < c, any direction).

3. All combinations of Lorentz boosts and space rotations.

The discrete Lorentz symmetries are the reversal of space P (the parity), the reversal of

time T , and their combination PT . And of course, any of these discrete symmetries can be

combined with a continuous Lorentz symmetry — a boost, a rotation, or a combination of

both. For example, reflections off moving mirrors or a time reversals in moving frames are

members of the O(3, 1) Lorentz group.

Whenever the time order of events is important but the left/right distinction is not,

the relevant symmetry group is the orthochronous Lorentz group O+(3, 1). It comprises the

continuous Lorentz symmetries, the space reflection P , and all combinations thereof — but
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not the time reversal T . Under orthochronous Lorentz symmetries,

sign(x′0) = sign(x0) provided xµxµ ≥ 0. (65)

In 3D, scalars, vectors, and tensors are defined by their transformation properties under

the rotation symmetries. Likewise, in 4D, the 4–scalars, the 4–vectors, and the 4–tensors

are defined by their transformations under the continuous Lorentz symmetries (rotations,

boosts, and their combinations).

• A genuine 4–scalar must be invariant under all the SO+(3, 1) symmetries.

• The components of a genuine 4–vector must transform like the spacetime coordinates

(ct, x, y, z),

A′µ = Lµ
νA

ν for the same Lµ
ν as x′µ = Lµ

νx
ν . (66)

• Every index of a genuine 4–tensor must transform like the index of a 4–vectors. For

example, the components of a two-index 4–tensor F µν must transform according to

F ′µν = Lµ
αL

ν
βF

αβ. (67)

Examples of 4–vectors

Along a worldline xµ(τ) of some particle, the spacetime coordinates xµ comprise a 4–

vector, while the proper time τ along the worldline is a 4–scalar. Consequently, the 4–

velocity

uµ =
dxµ

dτ
(68)

is a genuine 4–vector. In components,

u0 = γc, u1 = γvx, u2 = γvy, u3 = γvz, (69)

hence

(u · u) = uµuµ = (γc)2 − (γv)2 = γ2(c2 − v2) = c2. (70)

The same result can be obtained in a manifest 4–vector form using the definition of the
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proper time,

(cdτ)2 = dI2 = (dx · dx), (71)

hence

(u · u) =
(dx · dx)

(dτ)2
= c2. (72)

Yet another way to see that (u · u) = c2 is to note that this is true in the rest frame of the

particle and hence must be true in any other frame since (u · u) is a Lorentz scalar.

Another example of a 4–vector kµ comprises the frequency ω and the wave vector k of

a plane wave ψ(t,x) = ψ0 exp(ik · x− iωt),

kµ =
(ω

c
, kx, ky, kz

)

. (73)

In the 4-vector language, the phase of the plane wave becomes the Lorentzian dot product

phase = k · x − ω × t = k · x −
(

k0 =
ω

c

)

×
(

x0 = ct
)

= −(k · x) = −kµx
µ, (74)

hence

ψ(x) = ψ0 exp(−ikµx
µ). (75)

Physically, the phase of a wave must be invariant under any Lorentz transform of the space-

time coordinates, and the only way to achieve this invariance for all x is to make the kµ

transform like a Lorentz 4–vector,

k′µ = Lµ
νk

ν and x′µ = Lµ
νx

ν =⇒ phase = −kµx
µ = −k′µx

′µ. (76)

The relativistic Doppler effect follows form the Lorentz transformation formula for the

4–vector kµ: If in one frame of reference a wave has frequency ω and wave vector k, then in
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another frame moving at velocity v relative to the first frame, the wave’s frequency is

ω′ = ck′o = cγ(k0 − ~β · k) = γ(ω − v · k). (77)

In particular, for a light wave in vacuum k = (ω/c)n where n is a unit vector in the direction

of the wave, hence

ω′ = γ(1 − ~β · n)× ω. (78)

Note: non-relativistically, there are two different formulae for the Doppler effect, one for the

frequency change from a moving source to the medium through which the wave propagates,

and the other for the change from the medium to the moving detector,

ωmedium =

(

1 +
vsource · n

uwave

)

× ωsource , ωdetector =

(

1 +
vdetector · n

uwave

)−1

× ωmedium .

(79)

But for a light wave, the “medium” does not matter, and all we need is the relative velocity

v between the source and the detector, and we may use eq. (78) to go directly from the

source frame to the detector frame. In particularly, for the source directly approaching or

directly receding from the detector,

ωdetector
ωsource

= γ(1∓ β) =
1∓ β

√

1− β2
=

√

1∓ β

1± β
, (80)

while for the relative motion ⊥ to the wave direction

ωdetector
ωsource

= γ . (81)

A particularly important example of 4–vector is the derivative vector

∂µ =

(

∂

∂xµ

)

otherxν

=

(

1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

. (82)

Let’s prove that these derivatives indeed transform like a components of a Lorentz 4–vector.
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First, for any invertible linear transform x′µ = Lµ
νx

ν , the derivatives transform in the con-

tragradient fashion,

(

∂

∂x′µ

)

otherx′α

=

(

(

L⊤
)−1

) ν

µ

(

∂

∂xν

)

otherxβ

. (83)

Second, if the transform matrix L belongs to the Lorentz symmetry group, then

L⊤gL = g =⇒ gl =
(

L⊤
)−1

g =⇒
(

L⊤
)−1

= gLg−1, (84)

or in explicit index notations,

(

(

L⊤
)−1

) ν

µ

= gµαL
α
βg

βν = L ν
µ , (85)

where the second equality is simply raising and lowering of indices. Consequently, under any

Lorentz transforms of the spacetime coordinates, the derivatives transform as

∂′µ = L ν
µ ∂ν =⇒ ∂′µ = Lµ

ν∂
ν . (86)

In other words, the 4 derivative operators ∂µ indeed comprise a genuine Lorentz vector.

Corollary: The D’Alembert operator

def
=

1

c2
∂2

∂t2
−

∂2

∂x2
−

∂2

∂y2
−

∂2

∂z2
= ∂µ∂

µ (87)

is invariant under all Lorentz transforms. Consequently, a solution of the wave equation

ψ(x) = 0 in one frame of reference would also be a solution in any other reference frame.

What about Green’s functions of the wave equation? Since the equation itself is Lorentz-

invariant, it follows that Lorentz-transforming a Green’s function turns it into a Green’s

function —

if x G(x− y) = δ(4)(x− y) then x′ G(x′ − y′) = δ(4)(x′ − y′)

for x′µ = Lµ
νx

ν and y′µ = Lµ
νy

ν , (88)

— although it could be the same Green’s function we have started from or a different Green’s

function. Fortunately, the most important Green’s function for the Electrodynamics — the
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retarded Green’s function

GR(x− y) =
1

4πc |x− y|
× δ

(

tx − ty −
|x− y|

c

)

(89)

is invariant under orthochronous Lorentz symmetries.

Proof: Let me first rewrite the retarded Green’s function in a manifestly invariant way

GR(x− y) =
1

2π
δ
(

(x− y)µ(x− y)µ
)

×Θ(x0 − y0), (90)

and then I’ll show that this formula is equivalent to (89). The δ–function in eq. (90) is

manifestly invariant under all Lorentz symmetries since its argument (x − y)µ(x − y)µ is a

dot product of a Lorentz vector with itself and hence a Lorentz scalar. Moreover, the δ–

function vanishes unless the vector xµ− yµ is light-like. For such vectors, the orthochronous

Lorentz symmetries preserve the sign of the time component x0 − y0, and this makes the

step-function factor Θ(x0 − y0) also invariant. Thus, the entire Green’s function (90) is

invariant under orthochronous Lorentz symmetries,

∀L ∈ O+(3, 1), , ∀ xµ, yµ : GR

(

Lµ
ν(x− y)ν

)

= GR

(

xµ − yµ
)

. (91)

Now, to see that eq. (90) is equivalent to eq. (89) for the retired Green’s function, let’s

rewrite it in 3D terms. Let xµ = (ctx,x) and y
µ = (cty,y), and let

(x− y)µ(x− y)µ = c2(tx − ty)
2 − |x− y|2 = f(ty) (92)

where the second equality emphasizes the ty dependence of this expression, since GR(x− y)

usually appears in the context of an integral over ty (and then an integral over y, but right

now we only care about the ty). As usual

δ(f(ty)) =
∑

i

δ(ty − ti)

|f ′(ti)|
(93)

where the sum is over the points ti where f(ty = ti) = 0 and f ′ is the derivative of f WRT
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ty. For the f(ty) as in eq. (92), there two points where f(ty) vanishes,

t1,2 = tx ∓
|x− y|

c
, (94)

and at these points

f(ti) = 2c2(ti − tx) = ∓2c|x− y|, (95)

hence

δ(f(ty)) =
1

2c|x− y|
×

(

δ(ty − tx + |x− y|/c) + δ(ty − tx − |x− y|/c)
)

. (96)

In the context of eq. (90), this makes for

GR(x−y) =
1

4πc |x− y|
×
(

δ(ty−tx+ |x−y|/c) + δ(ty−tx−|x−y|/c)
)

×Θ(tx−ty). (97)

The step function factor here is 1 for ty = tx − r/c but zero for ty = tx + r/c, so we are left

with

GR(x− y) =
1

4πc |x− y|
× δ(ty − tx + |x− y|/c), (98)

exactly as in eq. (89). Quod erat demonstrandum.

BTW, the retarded Green’s function in our formulae has an extra factor of 1/c compared

to what we had earlier in class, cf. my notes on Maxwell equations (eq. (70) on page 13).

Consequently,

xGR(x−y) =
1

c
×δ(tx−ty)×δ

(3)(x−y) = δ
(

c(tx−ty) = x0−y0
)

×δ(3)(x−y) = δ(4)(x−y),

(99)

which is a more appropriate normalization of a relativistic Green’s function.

Let me conclude these notes with a few more examples of Lorentz vectors and tensors

which I shall discuss in detail in the following lectures.
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• The energy and the momentum of a particle form a 4–vector

pµ =

(

E

c
, px, py, pz

)

. (100)

For a particle of rest mass m0 moving at 4–velocity uµ,

pµ = m0u
µ =⇒ E = γm0c

2 and p = γm0v. (101)

• The electric charge density and the current density form a 4–vector

Jµ = (cρ, Jx, Jy, Jz). (102)

• The scalar potential Φ and the vector potential A form a 4–vector. In Gauss units In

Aµ = (Φ, Ax, Ay, Az). (103)

• The electric field E and the magnetic field B form an antisymmetric Lorentz tensor

F µν = −F νµ. In Gauss units

F µν =









0 −Ex −Ey −Ez

+Ex 0 −Bz +By

+Ey +Bz 0 −Bx

+Ez −By +Bx 0









. (104)

• Finally, the EM energy density U , the Poynting vector S, and the Maxwell stress tensor

Tij combine into a symmetric Lorentz tensor T µν = +T νµ. In Gauss units

T µν =









U Sx Sy Sz

Sx Txx Txy Txz

Sy Tyx Tyy Tyz

Sz Tzx Tzy Tzz









. (105)
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