1. First, an easy electrostatic boundary problem. Two concentric metal spheres of respective radii a and b act as capacitor plates. Half of the space between the spheres (say, the lower hemisphere) is filled with a solid dielectric of dielectric constant ϵ while the other half is vacuum:

Note: the boundary between the dielectric and the vacuum lies in the same plane as the common center of the two spheres.

The voltage between the metal spheres is V.

- (a) Show that a radial E field between the spheres obeys the boundary conditions at the dielectric-vacuum interface.
 Then find the electric tension field E and the electric displacement field D everywhere between the spheres.
- (b) Find the surface charge densities on the metal spheres, and then the capacitance of this half-filled capacitor
- 2. Next, a reading assignment: §5.12 of Jackson's textbook about magnetic shielding by a spherical shell of high-permeability material. If you have trouble following the boundary condition for the magnetic scalar potential $\Psi(\mathbf{x})$ (which Jackson calls $\Phi_M(\mathbf{x})$, go back to the example of a dielectric sphere in external electric field in \$4.4.
- 3. Now consider a wire loop \mathcal{L} carrying steady current *I*. The loop \mathcal{L} may have any size or shape, as long as it is closed. The magnetic field **H** generated by the current in this loop obtains from the scalar potential

$$\Psi(\mathbf{x}) = \frac{I}{4\pi} \Omega(\mathbf{x}) \tag{1}$$

where $\Omega(\mathbf{x})$ is the solid angle spanned by the loop \mathcal{L} when viewed from the point \mathbf{x} .

By convention, $\Omega(\mathbf{x})$ is positive if the current in \mathcal{L} viewed from point \mathbf{x} appears to run clockwise, and negative if the current appears to run counterclockwise. To avoid a discontinuity when \mathbf{x} is surrounded by the loop, $\Omega(\mathbf{x})$ should be analytically continued while \mathbf{x} moves from one side of the loop to another. Such continuations makes Ω multivalued, with different values at the same point \mathbf{x} differing by 4π , or more generally by $4\pi \times$ an integer.

(a) Show that

$$\Omega(\mathbf{x}) = \iint_{\mathcal{S}} \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3} \cdot d^2 \operatorname{area}(\mathbf{y})$$
(2)

where \mathcal{S} is a surface spanning the loop \mathcal{L} .

- (b) Explain how eq. (2) leads to the sign convention for the $\Omega(\mathbf{x})$, and also how different surfaces \mathcal{S} can yield values of $\Omega(\mathbf{x})$ which differ from each other by $4\pi \times an$ integer.
- (c) Show that $\mathbf{H} = -\nabla \Psi$ for the scalar potential (1) agrees with the Biot–Savart–Laplace formula for the magnetic field of the current I in the loop \mathcal{L} .

Hint: prove and use

$$\nabla_y \times \left(\frac{(\mathbf{y} - \mathbf{x}) \times \mathbf{c}}{|\mathbf{y} - \mathbf{x}|^3}\right) = (\mathbf{c} \cdot \nabla_y) \frac{(\mathbf{y} - \mathbf{x})}{|\mathbf{y} - \mathbf{x}|^3}$$
(3)

for $\mathbf{y}\neq\mathbf{x}$ and any constant vector $\mathbf{c}.$

4. Finally, an exercise on electrostatic energy. Take two large parallel vertical metal plates at small distance d between them, and immerse them part way into transformer oil with dielectric constant ϵ and mass density ρ . Connect the plates by wires to a battery or any other DC power supply of voltage V.

Show that this makes the oil between the plates rise to the height

$$h = \frac{(\epsilon - 1)\epsilon_0 V^2}{2\rho g d^2} \tag{4}$$

relative to the oil outside the plates. (g = 9.8 N/kg is the gravitational field.)