
PHY–387 K. Problem set #12. Due May 2, 2019.

1. Consider Ohm’s Law in a moving conducting medium. The Lorentz covariant form of the

Ohm’s Law is

Jµ − Jνuν
c2

uµ =
σ

c
Fµνuν (1)

where uµ is the 4–velocity of the medium,

Uµ =
dxµ

dτ
, u0 = γc, u = γv. (2)

(a) Verify that in the rest frame of the conducting medium eq. (1) becomes the usual

Ohm’s Law equation J′ = σE′ where σ is the conductivity and primes denote the

rest-frame quantities.

(b) Now, for a general inertial frame, spell out eq. (1) in 3D vector notations. Note: you

should get two separate equations, one for µ = 0 and one for µ = i = 1, 2, 3.

(c) Next, let’s focus on the lab frame in which the medium moves at velocity v 6= 0.

Suppose you are given both the EM fields E and B and the electric charge density ρ,

all in the lab frame. Show that the electric current density in that frame is (in Gauss

units)

J = ρv + γσ

[
E +

v

c
×B − v(v · E)

c2

]
. (3)

(d) Finally, suppose we know that the moving medium is electrically neutral in its rest

frame, ρ′ = 0. Show that in the lab frame

J = γσ
(
E +

v

c
×B

)
, ρ =

γσ

c2
(
v · E

)
. (4)
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2. Consider a point particle of charge q moving at constant velocity vector v; in worldline

terms

xµcharge(τ) = uµ × τ. (5)

In covariant form, the EM fields created by this particle are

Fµν(x) =
q

c

(
xµuν − xνuµ)

R′3
(6)

where

R′2 =
(x · u)2

c2
− (x · x). (7)

(a) Verify that for a particle at rest, the electric components of the Fµν tensor (6) comprize

the usual Coulomb field of the point particle (in Gauss units) while the magnetic

components are absent, B = 0.

(b) Show that for a moving charge

R′2 = γ2(x‖ − vt)2 + x2
⊥. (8)

In other words, eq. (7) is the covariant way of writing the distance from the moving

charge in that charge’s rest frame, cf. eq. (54) of my notes.

(c) Finally, spell out the EM field tensor (6) for a moving charge in 3D terms and check

that the E and B fields agree with eqs. (52) of my notes, specifically

E(x, t) =
γQ(x− vt)

R′3
, B(x, t) = ~β × E(x, t). (9)
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3. Lorentz symmetries combine the energy density, the energy flux density, the momentum

density, and the stress tensor into a symmetric Lorentz tensor Tµν = +T νµ called the

stress-energy tensor. For the electromagnetic fields in the vacuum, the stress-energy tensor

can be written in covariant form as

Tµν =
1

4π
FµαgαβF

βν +
1

16π
gµνFαβF

αβ (10)

(Gauss units).

(a) Spell out the components of the stress-energy tensor in 3D terms and explain the

physical meaning of the components.

(b) Use Maxwell equations (in the covariant form) to show that

∂µT
µν =

1

c
JµF

µν . (11)

(c) Spell out eq. (11) in 3D terms — separately for ν = 0 and for ν = j = 1, 2, 3 — and

explain the physical meaning of these equations.

4. Consider photo-production of pions via the following process:

p+ γ → ∆+ → n+ π+ (12)

— a proton absorbs a photon and becomes a ∆+ resonance, which then decays into a

neutron and a positive pion. At both stages of this process, the net energy-momentum is

conserved,

Pµ(p) + Pµ(γ) = Pµ(∆) = Pµ(n) + Pµ(π), (13)

while for each of the particles here

Pµ((i)Pµ(i) = c2M2(i). (14)

Specifically, the rest masses of particles involved in this process are as follows: Proton,

Mp ≈ 938 MeV/c2; pion, Mπ+ ≈ 139 MeV/c2; ∆+ resonance, M∆+ ≈ 1226 MeV/c2;

neutron, Mn ≈ 939 MeV/c2 (you may approximate Mn ≈Mp); and photon, exactly zero.
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(a) In the center-of-mass frame — which is also the frame in which the ∆+ resonance is

at rest — what are the energies of the neutron and the pion?

(b) In the lab frame — the frame in which the initial proton is at rest — what should the

photon’s energy be in order to make the ∆+ resonance?

(c) For the lab frame, derive the relation between the energy of the pion and the direction

of its velocity. Give numerical values for the maximal and minimal values of pion’s

energy and find out whether the pion can move backwards (relative to the incident

photon)?

(d) Now consider the frame where the target proton moves at a relativistic velocity. If a

photon collides with this proton “head on”, it takes a lower photon energy to make

a ∆+ resonance. For an extremely high energy cosmic ray proton, even a photon

from the cosmic microwave background can make a ∆+. This is known as the GZK

(Greisen–Zatsepin–Kuzmin) effect which makes it difficult for the ultra high energy

protons to fly more than a few megaparsecs through the intergalactic space.

While the energy spectrum of the microwave background peaks about 2
3 × 10−3 eV,

the photons with 3 times higher energy h̄ω = 2 · 10−3 eV are numerous enough to act

as GZK obstacles for the ultra high energy protons. How much energy does a proton

needs to collide with such a photon and make a ∆+ resonance?
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