PHY-387 K. Problem set \#13. Due May 9, 2019.

1. Consider once again a point charge moving at constant velocity \mathbf{v}; in worldline terms, $x_{c}^{\mu}(\tau)=\tau \times u^{\mu}$. The EM fields produced by this charge were calculated in my notes on covariant electrodynamics by Lorentz-boosting the Coulomb field of a point charge at rest, and in your previous homework set \#12 you should have verified the covariant form of the EM field tensor,

$$
\begin{equation*}
F^{\mu \nu}(x)=\frac{q}{c} \times \frac{x^{\mu} u^{\nu}-x^{\nu} u^{\mu}}{\left[c^{-2}(x \cdot u)^{2}-(x \cdot x)\right]^{3 / 2}} \tag{1}
\end{equation*}
$$

On the other hand, in my notes on radiation by moving charges we used Liénard-Wiechert retarded potentials to show that for a non-accelerating point charge

$$
\begin{equation*}
F^{\mu \nu}(x)=\left[\frac{q c^{2}\left(n^{\mu} u^{\nu}-n^{\nu} u^{\mu}\right)}{R^{2}(n \cdot u)^{3}}\right]_{\mathrm{ret}} \tag{2}
\end{equation*}
$$

where R and $n^{\mu}=(1, \mathbf{n})$ should be evaluated at the retarded time $\left(x^{0}-R\right) / c$ rather than the observer time X^{0} / c.

Your task is to reconcile the two fomulae (1) and (2).
2. A particle of charge q, mass m, and a non-relativistic initial velocity $v_{0} \ll c$ collides head-on with a repulsive central potential $V(r)$, and bounces back. While the particle is decelerated - and then accelerated on its way back - by the potential, it emits EM radiation.
(a) Show that the total energy emitted by the particle is

$$
\begin{equation*}
\Delta W=\frac{4 q^{2}}{3 m^{2} c^{3}} \times \int_{R_{0}}^{\infty} \frac{d r}{\sqrt{v_{0}^{2}-(2 / m) V(r)}} \times\left|\frac{d V}{d r}\right|^{2} \tag{3}
\end{equation*}
$$

where R_{0} is the closest approach of the particle to the potential center. (That is, the point where $V(r)=\frac{1}{2} m v_{0}^{2}$.)
(b) For the special case of the Coulomb potential $V(r)=Q q / r^{2}$, show that

$$
\begin{equation*}
\Delta W=\frac{8}{45} \frac{q}{Q} \frac{m v_{0}^{5}}{c^{3}}, \tag{4}
\end{equation*}
$$

or in terms of the initial kinetic energy $E_{0}=\frac{1}{2} m v_{0}^{2}$ of the particle,

$$
\begin{equation*}
\frac{\Delta W}{E_{0}}=\frac{16}{45} \frac{q}{Q}\left(\frac{v_{0}}{c}\right)^{3} . \tag{5}
\end{equation*}
$$

3. Consider a relativistic particle of charge q decelerating to stop at uniform rate during a very short time interval Δt. That is, for $t<0$ the particle moves at constant velocity $\vec{\beta}_{0} c$, for $0<t<\delta t$, the particle have constant acceleration $\mathbf{a}=-\vec{\beta}_{0} c / \Delta t$ (in the lab frame) in the direction directly opposite the velocity, at $t=\Delta t$ the particle comes to stop, and for $t>\Delta t$ it remains at rest. While the particle is decelerating, it emits EM radiation.
(a) Show that the net radiant energy emitted per unit of solid angle is

$$
\begin{equation*}
\frac{d E}{d \Omega}=\frac{q^{2} \beta_{0}^{2}}{16 \pi c \Delta t} \times \frac{\sin ^{2} \theta\left(2-\beta_{0} \cos \theta\right)\left(2-2 \beta_{0} \cos \theta+\beta_{0}^{2} \cos ^{2} \theta\right)}{\left(1-\beta_{0} \cos \theta\right)^{4}} \tag{6}
\end{equation*}
$$

(b) Show that for ultra-relativistic particles with initial $\gamma_{0} \gg 1$, this radiant energy distribution becomes strongly concentrated in the forward cone of opening angle $\sim 1 / \gamma_{0}$. Also, show that within this cone

$$
\begin{equation*}
d E=\frac{q^{2} \gamma_{0}^{4}}{\pi c \Delta t} \times \frac{\xi^{3} d \xi d \phi}{\left(1+\xi^{2}\right)^{4}} \quad \text { for } \quad \xi=\gamma_{0} \times \theta \tag{7}
\end{equation*}
$$

and the total radiation energy emitted is

$$
\begin{equation*}
E=\frac{q^{2} \gamma^{4}}{6 c \Delta t} \tag{8}
\end{equation*}
$$

