
Noether Theorem

Back in 1915, Emmy Noether proved the theorem: For every generator of a continuous

symmetry of a mechanical system there is a conserved quantity. Eventually, the Noether

theorem was generalized from classical mechanics to classical field theory, to quantum me-

chanics, and to quantum field theory. In these notes we shall focus on field theory where

Noether theorem says that for every generator T a of a continuous global symmetry of a field

theory there is a conserved current Jµa , ∂µJ
µa = 0.

Let me illustrate the Noether theorem with an example: A classical theory of N scalar

fields Φa(x) (a = 1, 2, . . . , N) with the Lagrangian density

L =
1

2

∑
a

∂µΦa∂
µΦa −

m2

2

∑
a

(Φa)
2 − λ

4

(∑
a

(Φa)
2

)2

. (1)

This Lagrangian density — and hence the action S =
∫
L d4x — is invariant under O(N)

orthogonal transforms of the fields into each other,

Φ′a(x) =
∑
b

RabΦb(x) for R ∈ O(N). (2)

Indeed, orthogonality of the Rab matrix, R>R = 1, implies that

∑
a

(Φ′a)
2 =

∑
a

(Φa)
2 (3)

— which leaves the potential part of L invariant; and for a global symmetry where Rab is

the same for all x the kinetic part of L is also invariant,

∂µΦ′a(x) =
∑
b

Rab∂µΦb =⇒
∑
a

∂µΦ′a∂
µΦ′a =

∑
a

∂µΦa∂
µΦa . (4)

The continuous subgroup of O(N) is SO(N) — the group of rotations in the N dimen-

sional field space. The SO(N) group is generated by the antisymmetric matrices Aab = −Aba.
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The infinitesimal SO(N) infinitesimal rotations have form

Φ′a(x) = Φa(x) + δΦa(x) = Φa(x) +
∑
b

εabΦb(x), (5)

for infinitesimal εab, which in matrix form means R = 1 + ε. Orthogonality of such infinites-

imal rotations means

1 = R>R = 1 + ε + ε> + O(ε2),

which requires the infinitesimal matrix ε to be antisymmetric, ε> = −ε. As to finite SO(N)

rotations, any finite rotation R can be obtains as a sequence of n small-angle rotations R1/n

which become infinitesimal for n→∞. Specifically,

for n→∞, R1/n = infinitesimal 1 +
A

n
+ O(1/n2) (6)

for some antisymmetric matrix Aab = −Aba, hence

R = lim
n→∞

(
1 +

A

n
+O(1/n2)

)n
= exp(A). (7)

In other words, every special orthogonal matrix R is a matrix exponential of some antisym-

metric matrix A.

In the field space, the infinitesimal transforms (5) act on functions of the fields as

∑
ab

εabΦb
∂

∂Φa
=
−i
2

∑
ab

εabTab (8)

where

Tab = −Tba = −iΦa
∂

∂Φb
+ iΦb

∂

∂Φa
(9)

are the generators of the SO(N) symmetries. For N = 3 the SO(3) symmetry can be
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identified as the isospin with 3 generators

T a = −iεabcΦb
∂

∂Φc
〈〈 implicit

∑
bc 〉〉 (10)

obeying angular-momentum-like commutation relations

[Ta, Tb] = iεabcTc . (11)

But for N > 3 the cross product of two isovectors yield an antisymmetric iso-tensor rather

than an isovectors hence 1
2N(N − 1) generators (9). And their commutator algebra has a

messier form that eq. (11); instead, we have

[Tab, Tcd] = −iδbcTad + iδacTbd + iδbdTac − iδadTbc . (12)

Coming back to the Noether theorem, for each generator Tab of the SO(N) symmetry

we have a conserved current

Jµab = −Jµba = Φa∂
µΦb − Φb∂

µΦa . (13)

Please note: The SO(N) symmetries (2) leave the action invariant regardless of the fields

obeying or disobeying any equations of motions. On the other hand, the classical cur-

rents (13) are conserved ∂µJ
µ
ab = 0 only when the fields do obey their equations of motion.

Proof: For the classical Lagrangian density (1),

∂L
∂(∂µΦa)

= ∂µΦa while
∂L
∂(Φa)

= −Φa ×

(
m2 + λ

∑
c

Φ2
c

)
, (14)

hence the classical field equations

∀a = 1, . . . , N : ∂2Φa = −Φa ×

(
m2 + λ

∑
c

Φ2
c

)
. (15)
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Consequently,

∂µ
(
Φa∂

µΦb) = (∂µΦa)(∂
µΦb) + Φa(∂

2Φb) = (∂µΦa)(∂
µΦb) − ΦaΦb×

(
m2 + λ

∑
c

Φ2
c

)
,

(16)

where both terms are symmetric WRT a↔ b, and therefore

∂µJ
µ
ab = ∂µ

(
Φa∂

µΦb) − (a↔ b) = 0. (17)

Quod erat demonstrandum.

In the quantum field theory, the classical currents Jµab(x) become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) = Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t).
(18)

In particular, the net charges Qab become operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0

ab(x, t) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
(19)

in the Hilbert space of the quantum theory. (Which is the Fock space of N species of

identical spinless bosons.) In your homework set#4 (problem 3), you will learn that these

charge operators are conserved in the quantum way — they commute with the Hamiltonian

operator Ĥ. Moreover, the charges (19) obey the commutation relations (12) of the SO(N)

generators,

[
Q̂ab, Q̂cd

]
= −iδ[c[bQ̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc , (20)

and they act on the quantum fields Φ̂a(x) similarly to the classical generators Tab acting on

the classical fields,

[
Q̂ab, Φ̂c(x)

]
= −iδbcΦ̂a(x) + iδacΦ̂b(x), (21)
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hence for V̂ =
1

2

∑
ab

AabQ̂ab 〈〈where Aba = −Aab 〉〉 (22)[
V̂ , Φ̂c

]
= −iAcdΦ̂d 〈〈 implicit

∑
d 〉〉. (23)

In the quantum theory, the operators Q̂ab represent the symmetry generators Tab, and

that’s why they must obey similar commutation relations. As to the finite SO(N) ‘rotations’

of the field space, they are represented by unitary operators

Û(R) = exp

(
−i
2

∑
ab

AabQ̂ab

)
for R = exp(A), (24)

and the similarity of the commutations relations of the generators Tab and the charges Q̂ab

assures that

Û(R2R1) = Û(R2)Û(R1) (25)

In the Schrödinger picture of the quantum theory, the symmetry operators (24)act on the

quantum states

|ψ〉 →
∣∣ψ′〉 = Û |ψ〉 . (26)

In your homework#4 you will see how this symmetry acts on the multi-particle states: It

rotates by R the species index of each particle but makes no other changes:

Û |n : (p1, a1), . . . , (pn, an)〉 =
∑

b1,...,bn

Ra1,b1 · · ·Ran,bn |n : (p1, b1), . . . , (pn, bn)〉 . (27)

In the Heisenberg picture, the symmetry operators leaves the quantum states as they are

but instead they act on the operators as

Ô′ = ÛÔÛ †, (28)

and in the homework#4 you will see that the (24) operator Û(R) acts on the quantum fields
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precisely as the SO(N) symmetry R, namely

ÛΦ̂a(x)Û † =
∑
b

RabΦ̂b . (29)

Going back to the classical fields, for N = 2 the two real fields Φ1(x) and Φ2 can be

reorganized into a complex field Φ(x) and its complex conjugate Φ∗(x). In terms of these

complex fields, the SO(2) symmetry becomes the phase symmetry

Φ′(x) = e−iθΦ(x), Φ∗′(x) = e+iθΦ∗(x). (30)

In the quantum theory, this phase symmetry is generated by the charge Q̂ = Q̂21 = −Q̂12,

specifically

exp(+iθQ̂)Φ̂(x) exp(−iθQ̂) = e−iθΦ̂(x),

exp(+iθQ̂)Φ̂†(x) exp(−iθQ̂) = e+iθΦ̂†(x).
(31)

In the particle language, the charge Q̂ counts the net number of particles minus the number

of antiparticles,

Q̂ = N̂particles − N̂antiparticles =

∫
d3p

(2π)32Ep

(
â†pâp − b̂†pb̂p

)
. (32)

The proof is a part of homework#4.

Proof of the Noether Theorem

Let’s prove the Noether theorem for the classical field theory. To simplify out notations,

let φa run over all the fields of the theory, including the scalar fields, the components of the

vector fields, etc., etc. Any continuous symmetry of the field systems is generated by an

infinitesimal symmetry of the form

φ′a(x) = φa(x) + εiTφa(x) (33)

where ε is an infinitesimal parameter and T is the generator of the symmetry. T acts as some

kind of an operator in the field space, usually a linear operator like Tφa =
∑

b Tabφb(x) for

some matrix Tab, but it can also be a non-linear operator, and/or or involve the derivatives

∂µ for symmetries acting on the spacetime coordinates xµ.
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Under the infinitesimal transforms (33), the action

S[φ(x)] =

∫
d4xL(φ, ∂φ) (34)

should remain invariant, δS = 0, which leaves us with two options for the Lagrangian

density L(φ, ∂φ): Either it remains invariant, δL = 0, or else L changes by a total spacetime

derivative,

δL(φ, ∂φ) = ε× ∂µIµ(φ, ∂φ) (35)

for some vector-valued function of the fields φa and their derivatives ∂µφa.

On the other hand, given the action (33) on the classical fields, its action on the La-

grangian density L(φ, ∂φ) follows from its dependence on the fields and their derivatives,

thus

δL =
∑
a

(
∂L
∂φa
× δφa +

∂L
∂(∂µφa)

× ∂µδφa
)

=
∑
a

(
∂L
∂φa
× εiTφa +

∂L
∂(∂µφa)

× εi∂µTφa
)

〈〈 integrating the second term by parts 〉〉

= ε
∑
a

(
∂L
∂φa

− ∂µ

(
∂L

∂(∂µφa)

))
× iTφa

+ ε ∂µ

(∑
a

∂L
∂(∂µφa)

× iTφa

)
.

(36)

When the fields happen to obey their equations of motion

∂L
∂φa

− ∂µ

(
∂L

∂(∂µφa)

)
= 0, (37)

every term on the second-from-the-bottom line of eq. (36) vanishes and we are left with the

bottom line only, thus

δL = ε× ∂µ

(∑
a

∂L
∂(∂µφa)

× iTφa

)
. (38)
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Comparing this formula with eq. (35), we immediately see that

ε× ∂µ

(∑
a

∂L
∂(∂µφa)

× iTφa

)
= ε× ∂µI(φ, ∂φ). (39)

Therefore, if we define the current Jµ according to

Jµ
def
=
∑
a

∂L
∂(∂µφa)

× iTφa − Iµ(φ, ∂φ), (40)

then this current is conserved, ∂µJ
µ(x) = 0 when the fields obey their equations of motion.

This completes the proof of the Noether theorem for the classical field theory. And along

with the proof, we have also learned how to construct the conserved current for a given

infinitesimal symmetry. As an example, let’s go back to the SO(N)– symmetric theory of

N scalar fields with Lagrangian density

L =
1

2

∑
a

(∂µΦa)(∂
µΦa) − V

(∑
a

Φ2
a

)
. (41)

The infinitesimal SO(N) symmetries act on the fields according to

δΦa(x) =
∑
b

εabΦb(x) (42)

for some infinitesimal antisymmetric matrix εab. Interpreting this transform as δΦc(x) =

ε× iTΦc(x), we have

ε× iT =
1

2

∑
ab

εabiTab (43)

where

iTabΦc = δbcΦa − δacΦb , (44)

exactly as in eq. (9). Now let’s find the Noether current for each generator Tab = −Tba.
Since the symmetries (42) leave invariant not just the action but the Lagrangian density L,

8



we do not need the Iµ term in eq. (40). In other words, we let Iµ(Φ, ∂Φ) = 0, which leaves

us with

Jµab =
∑
c

∂L
∂(∂µΦc)

× iTabΦc

=
∑
c

(∂µΦc)× (δbcΦa − δacΦb)

= (∂µΦb)× Φa − (∂µΦa)× Φb

= Φa∂
µΦb − Φb∂µΦa ,

(45)

exactly as in eq. (13). And as we saw earlier, these currents are indeed conserved when the

fields obey their equations of motion.

In the special case of N = 2, we may recast the SO(2) symmetry as a phase symmetry

of a single complex field Φ(x) with Lagrangian density

L = (∂µΦ∗)(∂µΦ) − V
(
Φ∗Φ

)
, (46)

Φ′(x) = e−iθΦ(x), Φ∗′(x) = e+iθΦ∗(x), L′ = L.

The infinitesimal phase symmetry corresponds to θ = ε, thus

δΦ(x) = −iεΦ(x), δΦ∗(x) = +iεΦ∗(x), (47)

which in terms of the T generator means

TΦ(x) = −Φ(x), TΦ∗(x) = +Φ∗(x). (48)

In the eq. (40) for the Noether current, the invariance of L under the symmetry means

Iµ = 0, which leaves us with

Jµ =
∂L

∂(∂µΦ)
×iTΦ +

∂L
∂(∂µΦ∗)

×iTΦ∗ = (∂µΦ∗)×−iΦ + (∂µΦ)×+iΦ∗ = −2 Im
(
Φ∗∂µΦ

)
.

(49)
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Stress Energy Tensor

Now let’s change our focus from the internal symmetries of a field theory to the spacetime

symmetries, namely the translations of space and time:

? Active translations x′ν = xν + dν , φ′a(x
′) = φa(x).

∗ Passive translations φ′a(x) = φa(x+ d).

The active and the passive translations differ by the sign of the displacement vector dν , so

they have the same 4 generators P̃ ν . Specifically, consider a passive translation by infinites-

imal displacement dν = εν , then

φ′a(x) = φa(x
′ = x+ ε)) = φa(x

′) + εν × ∂νφa(x′) + O(ε2), (50)

which we interpret as

δφa(x) = εν ×−iP̃νφa(x′) + O(ε2) for P̃νφa(x
′) = i∂νφa(x

′). (51)

The 4 generators P̃ν give rise to 4 conserved currents Jµ
(ν)

where µ is the current index,

∂µJ
µ
(ν)

(x) = 0, and (ν) is the generator index. Physically, the currents Jµ
(ν)

of the translation

symmetries are components of the stress-energy tensor, Jµ
(ν)

= Tµν , and the net charges

Pµ =

∫
d3xT 0

ν (52)

comprise the net energy-momentum of all the fields.

Let’s derive the Noether stress-energy tensor from the Lagrangian of a generic field

theory. While the net action S =
∫
Ld4x is invariant under the translations of space and

time, the Lagrangian density is not invariant. Instead, it becomes translated with the fields,

L(φ′, ∂φ′)@x = L(φ, ∂φ)@(x+ ε) = L(φ, ∂φ)@x + εν × ∂ν
(
L(φ, ∂φ)

)
@x + O(ε2), (53)

which we interpret as δL = εν × ∂νL. In terms of the Iµ
(ν)

term in the Noether current Jµ
(ν)

,
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we have

δL = εν × ∂µ
(
δµνL

)
=⇒ Iµ

(ν)
= δµνL . (54)

Consequently, the Noether formula (40) gives us

Tµν = Jµ
(ν)

=
∑
a

∂L
∂(∂µφa)

×
(
−iP̃νφa = ∂νφa

)
− δµνL. (55)

Or after raising the ν index,

TµνNoether =
∑
a

∂L
∂(∂µφa)

× ∂νφa − gµν × L . (56)

For example, consider a theory of N scalar fields with a Lagrangian density of the form

L =
1

2

∑
a

(∂µΦa)(∂
µΦa) − V (Φ1, . . . ,ΦN ) (57)

for any potential V (Φ1, . . . ,ΦN ). For this Lagrangian

∂L
∂(∂µΦa)

= ∂µΦa, (58)

hence Noether stress-energy tensor (56) becomes

TµνNoether =
∑
a

(∂µΦa)(∂
νΦa) − gµνL. (59)

Note the symmetry of this stress-tensor, Tµν = T νµ.

The trouble with the Noether formula (56) for the stress-energy tensor is that for the

non-scalar fields — vector fields, tensor fields, spinor fields, etc., — it gives us an asymmetric

stress-energy tensor, TµνNoether 6= T νµNoether. Indeed, in the future homework set#5 you shall

see that for the electromagnetic fields the TµνNoether tensor is asymmetric; it also is not gauge

invariant, which is a separate kind of bad. But an asymmetric stress-energy tensor is bad

enough by itself: You cannot use Tµν 6= T νµ in the Einstein equations of General Relativity.
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Moreover, an asymmetric stress-energy tensor is bad for the angular momentum conserva-

tion. As explained in some detail in the Weinberg’s textbook, the currents of the Lorentz

symmetries δLµν have form

Mλ,µν(x) = xµT λν(x) − xνT λµ(x) + Spinλ,µν , Mλ,µν(x) = −Mλ,νµ(x), (60)

and consequently these currents are not conserved for asymmetric stress-energy tensors,

∂λMλ,µν 6= 0 when Tµν 6= T νµ . (61)

To make the Tµν tensor symmetric, we add a total divergence to the Noether’s stress-

energy tensor,

Tµνphys = TµνNoether + ∂λK
λµ,ν(φ, ∂φ), (62)

where Kλµ,ν is some kind of a three-index tensor made from the fields and their derivatives;

it also must be antisymmetric in its first two indices, Kλµ,ν = −Kµλ,ν . For any such Kλµ,ν ,

the ‘corrected’ stress-energy tensor is just as conserved as the Noether’s stress-energy tensor,

∂µ T
µν
phys = ∂µT

µν
Noether = 0(hopefully),

because

∂µ∂λK
λµ,ν = 0 due to Kλµ,ν = −Kµλ,ν . (63)

Also, for the fields which vanish at spatial infinity fast enough, the corrected stress-energy

tensor yields the same net energy-momentum as the Noether tensor,

P νnet =

∫
d3xT 0ν

phys =

∫
d3xT 0ν

Noether (64)

because

∆P ν =

∫
d3x ∂λK

λ0,ν =

∫
d3x∇iKi0,ν =

∮
space∞

d2AreaniKi0,ν −→ 0 (65)

when Ki0,ν(φ, ∂φ) decreases at r →∞ faster than 1/r2.
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The specific form of Kλµ,ν as a function of the fields and their derivatives is chosen

such as to make the ‘corrected’ stress-energy tensor (62) symmetric. For example, in the

homework#5 you shall see that the correction

Kλµ,ν = −Kµλ,ν = FµλAν (66)

symmetrizes the electromagnetic stress-energy tensor.
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