
The Quantum EM Fields and the Photon Propagator

Quantizing the free electromagnetic tension fields E and B is fairly straightforward. The

time-independent Maxwell equations

∇ · B̂(x) = 0, ∇ · Ê(x) = Ĵ0(x) → 0 (for the free fields) (1)

are imposed as operatorial constraints in the Hilbert space, while the time-dependent Maxwell

equations

∂

∂t
B̂ = −∇× Ê,

∂

∂t
Ê = +∇× B̂ (2)

follow from the free Hamiltonian

Ĥ =

∫
d3x
(
1
2Ê

2(x) + 1
2B̂

2(x)
)

(3)

and the equal-time commutation relations

[
Êi(x, t), Êj(y, t)

]
= 0,

[
B̂i(x, t), B̂j(y, t)

]
= 0,

[
Êi(x, t), B̂j(y, t)

]
= −iǫijk ∂

∂xk
δ(3)(x− y).

(4)

In light of eqs. (1), we may expand the vector fields into momentum/polarization modes

using only the transverse polarizations, for example the helicity modes λ = ±1 only, thus

k× ek,λ = iλ |k| ek,λ, ek,λ ⊥ k for λ = ±1,

Ê(x) =

∫
d3k

(2π)3

∑

λ=±1 only

eixkek,λ × Êk,λ , Ê
†
k,λ = −Ê−k,λ ,

B̂(x) =

∫
d3k

(2π)3

∑

λ=±1 only

eixkek,λ × B̂k,λ , B̂
†
k,λ = −B̂−k,λ ,

[
Êk,λ, Êk′,λ′

]
= 0,

[
B̂k,λ, B̂k′,λ′

]
= 0,

[
Êk,λ, B̂k′,λ′

]
= iλ|k|δλλ′ × (2π)3δ(3)(k + k′).

(5)

Consequently, the photonic creation and annihilation operators are defined for the transverse

polarizations only,

âk,λ = λB̂k,λ + iÊk,λ , â†k,λ = λB̂†
k,λ − iÊ†

k,λ , λ = ±1 only, (6)
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[
âk,λ, âk′,λ′

]
= 0,

[
â†k,λ, â

†
k′,λ′

]
= 0,

[
âk,λ, â

†
k′,λ′

]
= δλλ′×2|k|(2π)3δ(3)(k−k′). (7)

In terms of these operators, the free EM Hamiltonian becomes

Ĥ

∫
d3k

(2π)3
1

2ωk

∑

λ=±1 only

ωkâ
†
k,λâk,λ + const for ωk = + |k| , (8)

which makes for the usual time-dependence in the Heisenberg picture:

â
k,λ → â

k,λ × e−iωkt, â†
k,λ → â†

k,λ × e+iωkt, (9)

and hence (after a bit of algebra)

Ê(x, t) =

∫
d3k

(2π)3
1

2ω

∑

λ=±1 only

(
e−iωt+ikx(−iωek,λ)âk,λ + e+iωt−ikx(+iωe∗k,λ)â

†
k,λ

)
,

B̂(x, t) =

∫
d3k

(2π)3
1

2ω

∑

λ=±1 only

(
e−iωt+ikx(−ik× ek,λ)âk,λ + e+iωt−ikx(+ik× e∗k,λ)â

†
k,λ

)
.

(10)

Up to now I have focused on the EM tension fields F̂ µν(x), but to couple the EM to

come charged fields — like the electron field Ψ̂(x) — I would also need the quantum potential

fields Âµ(x) to spell out the interactions L ⊃ −Jµ ×Aµ. Classically, the potential fields are

subject to gauge symmetries

Aµ
old(x) → Aµ

new(x) = Aµ
old(x) − ∂µΛ(x), (11)

but implementing such symmetries in the quantum theory is highly non-trivial since a trans-

form changing the time-dependence of quantum fields must change the Hamiltonian oper-

ator. There are more problems with quantum gauge theories, and I’ll deal with them next

semester.

For the moment, let me simply say that the canonical quantization of the potential

fields Aµ(x) requires fixing a gauge. That is, we should remove the gauge-redundancy of the

potential fields by imposing a local linear constraint at each x, for example ∇ · A(x) ≡ 0

(the Coulomb gauge), or ∂µA
µ(x) ≡ 0 (the Landau gauge), or A3(x) ≡ 0 (the axial gauge).
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Once we impose such a constraint at the Lagrangian level, we find the canonical conjugates

of the remaining independent fields, build the classical Hamiltonian, and then quantize the

theory in the usual way to build the quantum fields, the Hilbert space where they act, and

the Hamiltonian operator. In general, different gauge-fixing constraints give rise to different

quantum theories, each having its own Hilbert space and the Hamiltonian operator. However,

all such theories are physically equivalent to each other!

For the free electromagnetic fields, I do not have to re-quantize the theory starting from

the Lagrangian and some gauge-fixing constraint for the Aµ(x). Since I already have the

quantum Ê(x) and B̂(x) fields as in eqs. (10), I can can obtain the free potential fields Âµ(x)

by simply solving the equations ∂µÂν(x)−∂ν Âµ(x) = F̂ µν(x) combined with the gauge-fixing

constraint. By linearity and translation invariance, the result has form

Âµ
free(x) =

∫
d3k

(2π)3
1

2ω

∑

λ=±1 only

(
e−ikxEµ(k, λ)× âk,λ + e+ikxEµ∗(k, λ)× â†k,λ

)
(12)

where the plane waves

Aµ(x) = e−ikx × Eµ(k, λ) and Aµ(x) = e+ikx × Eµ∗(k, λ) for k0 = +|k| (13)

obey the gauge-fixing conditions as well as the Maxwell equations. For example, in the

Coulomb gauge ∇ · Â = 0, the polarization vectors Eµ have simple form

Eµ(k, λ) =
(
0, e(k, λ)

)
(14)

while in the axial gauge n ·A = 0 (where n is a fixed unit 3-vector) we have much messier

formulae

~E(k, λ) = e(k, λ) − n · e(k, λ)
n · k k, E0(k, λ) = −n · e(k, λ)

n · k ωk . (15)
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Photon Propagator

The photon propagator

Gµν
F (x− y) = 〈0|TÂµ(x)Âν(y) |0〉 (16)

depends on the gauge-fixing condition for the quantum potential fields Âµ(x). So let me first

calculate it for the Coulomb gauge ∇ · Â ≡ 0, and then I’ll deal with the other gauges.

Instead of calculating the propagator directly from eqs. (16), (12), and (14), let me use

the fact that Gµν(x− y) is a Green’s function of the Maxwell equations for the Aµ fields,

∂2Aν(x) − ∂ν(∂µA
µ(x)) = Jν(x) =⇒ Aµ(x) =

∫
d4y (−i)Gµν(x− y)× Jν(y). (17)

Let’s start with the scalar potential A0(x, t). In the Coulomb gauge we have

∂µA
µ = ∂0A

0 + ∇ ·A = ∂0A
0 + 0, (18)

which makes the equation for the A0(x) time-independent. Indeed,

J0 = ∂2A0(x) − ∂0(∂µA
µ(x)) = (∂20 −∇2)A0 − ∂0(∂0A

0) = −∇2A0(x) (19)

while the terms containing the time derivatives ∂0 cancel out. Consequently, the A0(x, t) is

the instantaneous Coulomb potential for the electric charge density J0(y, t),

A0(x, t) =

∫
d3y

J0(y, same t)

4π|x− y| (20)

— which is why this gauge is called the Coulomb gauge. In terms of the Green’s function,

this means

G0i ≡ 0, G00(x− y) =
iδ(x0 − y0)

4π|x− y| , (21)

of after Fourier transform to the momentum space,

G00(k) =
i

k2
independent of k0. (22)
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As to the vector potential A, it obeys

∂2A + ∇(∂µAµ) = J (23)

where in the Coulomb gauge

∂µA
µ = ∂0A

0 = − 1

∇2
∂0J

0 = +
1

∇2
(∇ · J) (24)

where the last equality follows from the electric current conservation, ∂0J
0 = −∇ · J. Con-

sequently,

(∂20 −∇2)A = J − ∇ 1

∇2
(∇ · J), (25)

or in momentum basis

−(k20 − k2)×Ai(k) = J i − kikj

k2
× Jj . (26)

In terms of the Green’s function, this means

Gi0 = 0, Gij(k) =
i

k20 − k2
×
(
δij − kikj

k2

)
. (27)

Altogether, all the components of the Gµν(k) can be summarized as

Gµν(k) =
i

k20 − k2
× Cµν(k) (28)

where

Cij = δij − kikj

k2
, Ci0 = C0i = 0, C00 =

k20 − k2

k2
=

k20
k2
− 1. (29)

A convenient way to summarize this Cµν(k) tensor is

Cµν(k) = −gµν + kµcν(k) + kνcµ(k) for cµ(k) =
(k0,−k)

2k2
. (30)

In the coordinate space

Gµν(x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2
× Cµν(k) (31)

where the denominator has poles at k0 = ±|k|. As usual, these poles should be regularized

by moving them off the real axis, and different regularizations lead to different Green’s
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functions. We are interested in the specific Green’s function — the Feynman propagator —

so we should move the poles to k0 = +|k| − i0 and k0 = −|k|+ i0, thus

Gµν
F (x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2 + i0
×
(
Cµν(k) = −gµν + kµcν(k) + kνcµ(k)

)
. (32)

Now consider photon propagators for different gauge conditions for the EM potential

fields Âµ(x). When we change a gauge condition, the potential fields change as

Âµ
new(x) = Âµ

old(x) − ∂µΛ̂(x) (33)

for some Λ̂(x) that depends on the old Âµ(x) and the new gauge condition. For linear gauge

conditions,

Λ̂(x) =

∫
d4y Lµ(x− y)Âµ

old(y) (34)

for some kernel Lµ(x− y), or in momentum space

Λ̂(k) = Lµ(k)Â
µ
old(k). (35)

Consequently, in the new gauge the Feynman propagator becomes

Gµν
new(x− y) = 〈0|TÂµ

new(x)Â
ν
new(y) |0〉

= 〈0|TÂµ
old(x)Â

ν
old(y) |0〉 −

∂

∂xµ
〈0|TΛ̂(x)Âν

old(y) |0〉

− ∂

∂yν
〈0|TÂµ

old(x)Λ̂(y) |0〉 +
∂2

∂xµ∂yν
〈0|TΛ̂(x)Λ̂(y) |0〉

= Gµν
old(x− y) +

∂

∂xµ
fν(x− y) +

∂

∂yν
fµ(y − x) +

∂2

∂xµ∂yν
h(x− y)

for some functions fµ(x − y) and h(x − y). Fourier transforming to the momentum space,

we obtain

Gµν
new(k) = Gµν

old(k) + ikµ × fν(k) − ikν × fµ∗(k) + kµkν × h(k) (36)

for some functions fν(k) = and h(k) of the off-shell momenta. (In terms of the Lµ(k) from

eq. (35), fµ(k) = Lλ(k) × Gλν
old(k) while h(k) = Lκ(k)Lλ(k)G

κλ
old(k).) Consequently, if in
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the old gauge we had

Gµν
old(k) =

i

k2 + i0
×
(
−gµν + kµ × cνold(k) + kν × cµ∗old(k)

)
(37)

then in the new gauge we also have

Gµν
new(k) =

i

k2 + i0
×
(
−gµν + kµ × cνnew(k) + kν × cµ∗new(k)

)
(38)

for

cνnew(k) = cνold(k) + k2 ×
(
fν(k) + 1

2h(k)k
ν
)
. (39)

Now, back in eq. (32) we saw that in the Coulomb gauge the photon propagator indeed

has form (37) for some cν(k). Consequently, in any gauge, the photon’s Feynman propagator

has form

Gµν
F (x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2 + i0
×
(
−gµν + kµcν(k) + kνcµ(k)

)
(40)

where the vector-valued function cν(k) depends on the particular gauge condition, but ev-

erything else is the same in all gauges.

In the Feynman rules for QED — or for any other QFT containing the EM fields — the

photon propagators depend on the gauge-fixing condition via the cν(k) functions. However,

all the physical scattering amplitudes turn out to be gauge-independent. We shall see a few

examples of such gauge-invariant amplitudes this semester, and I shall prove the general

theorem in the Spring.

In practice, one uses whatever gauge condition would simplify the calculation at hand.

Usually, this means one of the Lorentz-invariant gauges where cν(k) is parallel to the kν and

hence

Gµν
F (x− y) =

∫
d4k

(2π)4
ie−ik(x−y)

k2 + i0
×
(
−gµν + (1− ξ)

kµkν

k2 + i0

)
(41)

for some real constant ξ. For ξ = 0 this photon propagator corresponds to the Landau

gauge ∂µA
µ ≡ 0. The propagators with other values of ξ do not correspond to any single
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gauge condition for the Aµ(x); instead, they obtain from a gauge-averaging procedure I

shall explain in April; for the moment, let me simply say that these gauges work fine. Of

particular importance is the Feynman gauge ξ = 1, which makes for a particularly simple

photon propagator

Gµν
F (x− y) =

∫
d4k

(2π)4
−igµν
k2 + i0

× e−ik(x−y). (42)

For the rest of this semester — and also through most of the Spring semester — I shall be

using this gauge.

QED Feynman rules

Quantum Electro-Dynamics or QED is the theory of EM field Aµ(x) coupled to the

electron field Ψ(x) (and optionally other charged fermion fields). The Lagrangian is

L = −1
4FµνF

µν + Ψ(i 6D −m)Ψ

= −1
4FµνF

µν + Ψ(i 6∂ −m)Ψ + eAµ ×ΨγµΨ
(43)

where the first 2 terms on the last line describe free photons and electrons e±, and the third

term is treated as a perturbation.

The two different field types have different propagators SF
αβ(x−y) = 〈0|TΨ̂α(x)Ψ̂β(y) |0〉

and Gµν
F (x − y) = 〈0|TÂµ(x)Âν(y) |0〉. In QED Feynman rules, these propagators are

denoted by two different types of internal lines: The electron propagator is drawn as a solid

line with an arrow indicating which end of the line belongs to a Ψ field and which to a Ψ,

Ψα Ψβ← q
=

[
i

6q −m+ i0

]

αβ

. (44)

The smaller arrow near q indicates the direction of the momentum flow. Both arrows should

have the same direction; otherwise we would have

Ψα Ψβ
q → =

[
i

−6q −m+ i0

]

αβ

. (45)
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The photon propagator is drawn as a wavy line without arrow,

Aµ Aν

q → =
i

q2 + i0
×
(
−gµν + qµcν(q) + qνcµ∗(q)

)
for some cν(q),

usually =
−i

q2 + i0
×
(
gµν + (ξ − 1)

qµqν

q2 + i0

)
for some constant ξ.

(46)

In this class I shall work in the Feynman gauge ξ = 1 where the photon propagator is simply

Aµ Aν

q → =
−igµν
q2 + i0

. (47)

The physical amplitudes do not depend on the gauge-fixing parameters ξ or cν(q), but the

intermediate results often do. Make sure to use the same gauge for all the photon propagators

in a diagram and also for all the diagrams contributing any particular process.

The vertices of Feynman diagrams follow from the interaction terms in the Lagrangian

that involve 3 or more fields. The QED Lagrangian has only one interaction term eAµ ×
ΨγµΨ, so there is only one vertex type, namely

µ

α

β

= (+ieγµ)βα . (48)

This vertex has valence = 3, and the 3 lines it connects must be of specific types: one wavy

(photonic) line, one solid line with incoming arrow, and one solid line with outgoing arrow.

Now consider the external lines. When the quantum EM field

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑

λ=±1

(
e−ikx Eµ(k, λ)× â

k,λ + e+ikx Eµ∗(k, λ)× â†
k,λ

)k0=+ωk

(49)

is contracted with an incoming or an outgoing photon, we end up with an external-line factor

accompanying the matching âk,λ or â†k′,λ′ operator, namely e−ikx×Eµ(k, λ) for an incoming

photon or e+ik′x×Eµ∗(k′, λ′) for an outgoing photon. The momentum space Feynman rules

take care of the e∓ikx factors, which leaves us with the polarization vectors Eµ(k, λ) or

Eµ∗(k′, λ′) for the external photon lines:

k →
= Eµ(k, λ) for an incoming photon, (50)
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k′ →
= Eµ∗(k′, λ′) for an outgoing photon. (51)

In general, the Feynman rules for any theory has similar external-line factors for all the

incoming and outgoing particles. For the scalar particles such factors are trivial — that’s

why we have not seen them before — but for all other types of particles there are non-trivial

external line factors we should not forget. In particular, the fermionic external lines carry

plane-wave Dirac spinors u(p, s), v(p, s), ū(p, s), or v̄(p, s), depending on the charge of the

fermion and whether it’s incoming or outgoing. Specifically,

an incoming electron e− carries
p→ = uα(p, s), (52)

an outgoing electron e− carries
p→ = ūα(p, s), (53)

an incoming positron e+ carries
p→ = v̄α(p, s), (54)

an outgoing positron e+ carries
p→ = vα(p, s). (55)

Note that for the incoming / outgoing electrons, the arrow on the external line has the same

direction as the particle — incoming for an incoming e− and outgoing for an outgoing e−,

— but for the positrons the arrow points in the opposite direction from the particle and

its momentum: An incoming e+ has an outgoing line (but in-flowing momentum) while an

outgoing e+ has an incoming line (but out-flowing momentum). In general, the arrows in

the fermionic lines follow the flow of the electric charge (in units of −e), hence opposite

directions for the electrons and the positrons.

Each QED vertex (48) has one incoming fermionic line and one outgoing, and we may

think of them as being two segments of single continuous line going through the vertex.

From this point of view, a fermionic line enters a diagram as an incoming e− or an outgoing

e+, goes through a sequence of vertices and propagators, and eventually exits the diagram

as an outgoing e− or an incoming e+,

e− in

e+ out

} {
e− out

e+ in

(56)

(The photonic lines here may be external or internal; if internal, they connect to some other

fermionic lines, or maybe even to the same line at another vertex.) Alternatively, a fermionic
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line may form a closed loop, for example

(57)

The continuous fermionic lines such as (56) or (57) are convenient for handling the Dirac

indices of vertices, fermionic propagators, and external lines. For an open line such as (56),

the rule is to read the line in the direction of the arrows, from the line’s beginning to its end,

spell all the vertices, the propagators, and the external line factors in the same order right-

to-left, them multiply them together as Dirac matrices. For example, consider a diagram

where an incoming electron and incoming positron annihilate into 3 photons, real or virtual.

This diagram has a fermionic line which starts at the incoming e−, goes through 3 vertices

and 2 propagators, and exits at the incoming e+ as shown below:

λ

k1

µ

k2

ν

k3
in e−(p−, s−)in e+(p+, s+) q1q2

(58)

The propagators here carry momenta q1 = p−−k1 and q2 = q1−k2 = k3−p+. The fermionic

line (58) carries the following factors:

• u(p−, s−) for the incoming e−;

• +ieγλ for the first vertex (from the right);

• i

6q1 −m+ i0
for the first propagator;

• +ieγµ for the second vertex;

• i

6q2 −m+ i0
for the second propagator;

• +ieγν for the third vertex;
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• v̄(p+, s+) for the incoming e+.

Reading all these factors in the order of the line (58), tail-to-head, and multiplying them

right-to-left, we get the following Dirac ‘sandwich’

v̄(p+, s+)× (+eγν)× i

6q2 −m+ i0
× (+ieγµ)× i

6q1 −m+ i0
× (+ieγλ)× u(p−, s−). (59)

In this formula, all the Dirac indices are suppressed; the rule is to multiply all factors as

Dirac matrices (or row / column spinors) in this order.

For a closed fermionic loop such as (57), the rule is to start at an arbitrary vertex or

propagator, follow the line until one gets back to the starting point, multiply all the vertices

and the propagators right-to-left in the order of the line, then take the trace of the matrix

product. For example, the loop

q1

q2

q3

q4

κ λ

µν

(60)

produces the Dirac trace

tr
[
(+ieγκ)× i

6q1 −m+ i0
× (+ieγλ)× i

6q2 −m+ i0
× (61)

× (+ieγµ)× i

6q3 −m+ i0
× (+ieγν)× i

6q4 −m+ i0

]
.

Note that a trace of a matrix product depends only on the cyclic order of the matrices,

tr(ABC · · ·Y Z) = tr(BC · · ·Y ZA) = tr(C · · ·Y ZAB) = · · · = tr(ZABC · · ·Y ). Thus, in

eq. (61), we may start the product with any vertex or propagator — as long as we multiply

them all in the correct cyclic order, the trace will be the same.
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As to the Lorentz vector indices λ, µ, ν, . . ., the index of a vertex should be contracted to

the index of the photonic line connected to that vertex. For example, the following diagram

for the e− + e− → e− + e− scattering

1 2

1′ 2′

(62)

evaluates to

iM =
(
ū(p′1, s

′
1)× (+ieγµ)×u(p1, s1)

)
×
(
ū(p′2, s

′
2)× (+ieγν)×u(p2, s2)

)
× −ig

µν

q2
. (63)

Here I have used the Feynman gauge for the photon propagator, but any other gauge would

produce exactly the same amplitude

iM = ū′1(ieγµ)u1 × ū′2(ieγν)u2 ×
i(−gµν + cµqν + qµcν)

q2

= ū′1(ieγµ)u1 × ū′2(ieγν)u2 ×
−igµν
q2

(64)

because of Gordon identities

ū′1(ieγµ)u1 × qµ = ū′2(ieγν)u2 × qν = 0. (65)

To prove these identities, we note that the spinors u1 ≡ u(p1, s1) and ū′1 ≡ ū(p′1, s
′
1) obey

the Dirac equations for the appropriate momenta,

6p1u1 = mu1 , ū′1 6p′1 = mū′1 . (66)

Moreover, q = p′1 − p1 and hence

ū′1γµu1 × qµ = ū′1 6qu1 = ū′1(6p′1−6p1)u1 = (mū′1)u1 − ū′1(mu1) = 0. (67)

Similarly, q = p2 − p′2 and hence

ū′2γµu2 × qµ = ū′2 6qu2 = ū′1(6p2−6p′2)u1 = ū′2(mu2)u2 − (mū′2) = 0. (68)

For other combinations of incoming or outgoing electrons or positrons connected to the
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same vertex we have similar Gordon identities:

v̄(p) 6qv(p′) = 0 for q = p′ − p,

v̄(p2) 6qu(p1) = 0 for q = p1 + p2 ,

ū(p′2) 6qv(p′2) = 0 for q = p′1 + p′2 ,

(69)

which provide for gauge invariance of the Feynman diagrams like

1 2

1′ 2′

or

1 2

1′ 2′

(70)

In general, an individual Feynman diagram is not always gauge-independent. However, when

one sums over all diagrams contributing to some scattering process at some order, the sum

is always gauge invariant. We shall return to this issue later this semester.

To complete the QED Feynman rules, we need to keep track of the ‘−’ signs arising from

re-ordering of the fermionic fields and creation / annihilation operators. To save time, I will

not go through the gory details of the perturbation theory. Instead, let me simply state the

rules for the overall sign of a Feynman diagram in terms of the continuous fermionic lines:

• There is a ‘−’ sign for every closed fermionic loop.

• There is a ‘−’ sign for every open fermionic line which begins at an outgoing positron

and ends at an incoming positron.

• There is a ‘−’ sign for every crossing of the fermionic lines.

Although the number of such crossing depends on how we draw the diagram on a 2D

sheet of paper, for example

1 2

1′ 2′

versus

1 2

1′ 2′

(71)
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its parity #crossings mod 2 is a topological invariant, and that’s all we need to deter-

mine the overall sign of the diagram.

⋆ If multiple Feynman diagrams contribute to the same process, then the external legs

should stick out from the diagram in the same order for all the diagrams. Or at

least all the fermionic external legs should stick out in the same order, which should

also agree with the order of fermions in the bra and ket states of the S–matrix el-

ement
〈
e−′, . . . , e−′, e+′, . . . , e+′, γ′, . . . , γ′

∣∣M
∣∣e−, . . . , e−, e+, . . . , e+, γ, . . . , γ

〉
for the

process in question.

Finally, the QED is usually extended to include other charged fermions besides e∓. The

simplest extension includes the muons µ∓ and the tau leptons τ∓ which behave exactly like

the electrons, except for larger masses: while me = 0.51100 MeV, mµ = 105.66 MeV and

mτ = 1777 MeV. In terms of the Feynman rules, the muons and the taus have exactly the

same vertices, propagators, or external line factors as the electrons, except for a different

mass m in the propagators. To distinguish between the 3 lepton species, one should label

the solid lines with e, µ, or τ . Different species do not mix, so a label belongs to the whole

continuous fermionic line; for an open line, the species must agree with the incoming /

outgoing particles at the ends of the line; for a closed loop, one should sum over the species

ℓ = e, µ, τ .

Coulomb Scattering

As an example of QED Feynman rules, consider the elastic scattering of two electrons,

e− + e− → e− + e−. There are two tree diagrams contributing to this process,

← q

1 2

1′ 2′

+
← q̃

1 2

1′ 2′

(72)

which are related by exchanging the final-state electrons, 1′ ↔ 2′. The first diagram (72)
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was evaluated back in eq. (63) as

iM1 =
−igµν
q2 = t

× ū′1(ieγµ)u1 × ū′2(ieγν)u2. (73)

For the second diagram, we exchange u′1 ↔ u′2, change the momentum of the virtual photon

from q = p′1− p1 to q̃ = p′2− p1 and hence q2 = t in the denominator to q̃2 = u, and there is

an overall minus sign due to electron line crossing, thus

iM2 = −−ig
µν

q̃2 = u
× ū′2(ieγµ)u1 × ū′1(ieγν)u2. (74)

Combining the two diagrams, we obtain the net tree-level scattering amplitude as

Mtree = M1 + M2 =
e2

t
× ū′1γµu1 × ū′2γ

µu2 −
e2

u
× ū′2γµu1 × ū′1γ

µu2 . (75)

Now let’s take the non-relativistic limit of this scattering amplitude. A non-relativistic

electron with 3-momentum |p| ≪ m and energy p0 ≈ m has plane-wave Dirac spinor

u(p, s) ≈
(√

mξ
√
mξ

)
+O(|p| /

√
m). (76)

Consequently, the Dirac sandwiches ū′γµu between non-relativistic electron spinors are ap-

proximately

ū(p′, s′)γ0u(p, s) = u†(p′, s′)u(p, s) ≈ 2m× ξ†s′ξs = 2m× δs,s′ ,

ū(p′, s′)~γu(p, s) = u†(p′, s′)

(
+~σ 0

0 −~σ

)
u(p, s) = 0×m + O(p,p′) ≪ m,

(77)

so the scattering amplitude (75) is dominated by the µ = 0 terms. Specifically,

Mnon.rel.
tree ≈ e2

t
× 2mδs′

1
,s1 × 2mδs′

2
,s2 −

e2

u
× 2mδs′

2
,s1 × 2mδs′

1
,s2

= −4m
2e2

q2
× δs′

1
,s1δs′2,s2 +

4m2e2

q̃2
× δs′

2
,s1δs′1,s2 ,

(78)

where on the second line I have used t ≈ −(q = p′
1 − p1)

2 and u ≈ −(q̃ = p′
2 − p1)

2 for

the non-relativistic electrons (since q0 = E′
1 − E1 = O(p2/m)≪ |q| and likewise q̃0 ≪ |q̃|).
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Note that despite the non-relativistic limit, the amplitude (78) is relativistically normalized.

In terms of the non-relativistically normalized scattering amplitude

f =
M

8πEcm
(79)

where Ecm ≈ 2m, we have

fnon.rel.tree ≈ − me2

4πq2
× δs′

1
,s1δs′2,s2 +

me2

4πq̃2
× δs′

2
,s1δs′1,s2 . (80)

Now let’s compare the QED amplitude (80) to the non-relativistic amplitude in potential

scattering. In the non-relativistic limit, the perturbative expansion of QED in powers of e2

roughly corresponds to the Born series in potential scattering, so the tree-level amplitude (78)

should be compared to the first Born approximation

fB(p→ p′) = −Mred

2π
× Ṽ (q = p′

1 − p1) = −Mred

2π
×
∫
d3xrel V (xrel)e

−iq·xrel . (81)

Or rather, this is the Born amplitude for distinct spinless particles with a reduced mass

Mred. For particles with spin but interacting with a spin-blind potential V (x1 − x2), the

Born amplitude is

fB = −Mred

2π
× Ṽ (q)× δs′

1
,s1δs′2,s2 (82)

if the two particles are distinct, and if they are identical fermions then there are two such

terms related by particle permutation,

fB = −Mred = 1
2m

2π
× Ṽ (q)× δs′

1
,s1δs′2,s2 +

Mred = 1
2m

2π
× Ṽ (q̃)× δs′

2
,s1δs′1,s2 . (83)

Comparing this Born amplitude to the non-relativistic limit of the tree-level QED ampli-

tude (80), we immediately see that the QED amplitude is a special case of the Born amplitude

for

Ṽ (q) = +
e2

q2
. (84)

Fourier transforming this formula back to the coordinate space gives us the good old Coulomb
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potential for the two electrons,

V (x1 − x2) =

∫
d3q

(2π)3
ei(x1−x2)·q × +e2

q2
=

+e2

4π |x1 − x2|
. (85)

Now consider the electron-positron elastic scattering e− + e+ → e− + e+ and its non-

relativistic limit. Again, there are two tree diagrams contributing to this process

1 2

1′ 2′

+

1 2

1′ 2′

(86)

which evaluate to

iMtree = −ū′1(ieγµ)u1 × v̄2(ieγν)v
′
2 ×
−igµν

t
+ v̄2(ieγµ)u1 × ū′1(ieγν)v

′
2 ×
−igµν

s
. (87)

The overall minus sign of the first term here is due to the outgoing-positron-to-incoming-

positron line in the first diagram; in the second diagram, the incoming electron-to-incoming-

positron or the outgoing-positron-to-outgoing-electron lines do not carry minus signs. This

time, there is no symmetry between the two diagrams (86), and the corresponding ampli-

tudes have rather different non-relativistic limits. In particular, the denominator of the first

diagram becomes t ≈ −q2 ≪ m2 (in absolute value) while the second diagram’s denomina-

tor has a much larger value s ≈ (2m)2. Consequently, the non-relativistic electron-positron

scattering is dominated by the t-channel diagram, thus

Mnon.rel.
tree ≈ −e

2

t
× ū′1γµu1 × v̄2γ

µv′2 . (88)

Moreover, in the non-relativistic limit

ū′1γ
0u1 ≈ +2m× δs′

1
,s1 , v̄2γ

0v′2 ≈ +2m× δs′
2
,s2 , (89)
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while for µ 6= 0

ū′1~γu1 , v̄2~γv
′
2 = O(p) ≪ m, (90)

hence

Mnon.rel.
tree ≈ −e

2

t
× 2mδs′

1
,s1 × 2mδs′

2
,s2 ≈ +

4m2e2

q2
× δs′

1
,s1δs′2,s2 , (91)

or in the non-relativistic normalization

fnon.rel.tree ≈ +
me2

4πq2
× δs′

1
,s1δs′2,s2 . (92)

Comparing this QED amplitude to the Born amplitude (82) for distinct fermions (since an

e− is distinct from an e+), we see that they agree for

Ṽ (q) = − e2

q2
. (93)

In coordinate space terms, this means the attractive Coulomb potential

V (x1 − x2) =
−e2

4π |x1 − x2|
. (94)

Thus QED perturbation theory confirms the oldest law of electrostatics: the like-sign charges

repel, while the unlike-sign charges attract.

However, this rule works only for the forces arising from exchanges of virtual odd spin

bosons — such as photons. The forces arising from exchanges of virtual even spin bosons

— such as scalar mesons, or gravitons — do not change sign when one of the two particles

is replaced with its anti-particle. Thus, the gravity force is always attractive. Likewise, the

Yukawa force due to an isoscalar scalar meson is attractive for all combinations of nucleons

and antinucleons — NN , NN , or NN .
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Yukawa Potential

The Yukawa theory and the Yukawa potential are discussed in detail in §4.7 of the Peskin
and Schroeder textbook, so in these notes let me simply highlight the differences between

the Yukawa theory and the QED. Instead of the EM field, the Yukawa theory has a scalar

field φ, thus

L = 1
2(∂µφ)

2 − 1
2m

2φ2 + Ψ(i 6∂ −M)Ψ − gφ×ΨΨ. (95)

(For simplicity, I assume a single fermion species.) The Feynman rules of the Yukawa theory

have the same fermionic propagators, external line factors, and sign rules as QED, but

instead of photon propagators it has scalar propagators — drawn as dotted lines

φ φ
q → =

+i

q2 −m2 + i0
, (96)

and instead of the fermion-antifermion-photon vertices of QED the Yukawa theory has

fermion-antifermion-scalar vertices

α

β

= −igδβα . (97)

without the γµ matrices.

Consequently, evaluating the scalar analogues of the diagrams (72) and (86) for the

ff → ff and f f̄ → f f̄ scattering processes, we obtain

M(ff → ff) = − g2

t−m2
× ū′1u1 × ū′2u2 +

g2

u−m2
× ū′2u1 × ū′1u2 .

M(f f̄ → f f̄) = +
g2

t−m2
× ū′1u1 × v̄2v

′
2 −

g2

s−m2
× v̄2u1 × ū′2v

′
2 .

(98)

In the non-relativistic limit

ū(p′, s′)u(p, s) ≈ +2Mδs′,s but v̄(p, s)v(p′, s′) ≈ −2Mδs′,s , (99)
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while

v̄(p2, s2)u(p1, s1), ū(p′1, s
′
1)v(p

′
2, s

′
2) = O(p) ≪ M, (100)

hence

M(ff → ff) ≈ −4M
2g2

t−m2
× δs′

1
,s1δs′2,s2 +

4M2g2

u−m2
× δs′

2
,s1δs′1,s2 ,

M(f f̄ → f f̄) ≈ −4M
2g2

t−m2
× δs′

1
,s1δs′2,s2 +

g2

s−m2
×O(p2).

(101)

Assuming the scalar is much lighter than the fermion, m ≪ M , and taking the fermions’

3-momenta p,p′ to be O(m)≪M , we have

1

t−m2
≈ −1

q2 +m2
≫ 1

M2
,

1

u−m2
≈ −1

q̃2 +m2
≫ 1

M2
, but

1

s−m2
≈ +1

4M2
,

(102)

hence

M(ff → ff) ≈ +
4M2g2

q2 +m2
× δs′

1
,s1δs′2,s2 −

4M2g2

q̃2 +m2
× δs′

2
,s1δs′1,s2 ,

M(f f̄ → f f̄) ≈ +
4M2g2

q2 +m2
× δs′

1
,s1δs′2,s2 + 0.

(103)

In the non-relativistic normalization, these amplitudes become

f(ff → ff) ≈ +
Mg2

4π(q2 +m2)
× δs′

1
,s1δs′2,s2 −

Mg2

4π(q̃2 +m2)
× δs′

2
,s1δs′1,s2 ,

f(f f̄ → f f̄) ≈ +
Mg2

4π(q2 +m2)
× δs′

1
,s1δs′2,s2 ,

(104)

which agree with Born amplitudes for

Ṽff (q) = Ṽff̄ = − g2

q2 +m2
. (105)

Fourier transforming this formula back too coordinate space gives us the Yukawa potential

Vff (x1 − x2) = Vff̄ (x1 − x2) = − g2

4π
× e−mr

r
for r = |x1 − x2| . (106)

Note the signs of these potentials — two fermions attract each other, and a fermion and an

antifermion also attract each other!
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