
ANNIHILATION

In these notes I explain the e+e− → γγ annihilation process. At the tree level of QED,

there are two diagrams related by interchanging of the two photons in the final state:

q

e− e+

γ1 γ2

+
q̃

e− e+

γ1 γ2

(1)

The net amplitude due to these diagrams is

M = E∗
µ(k1, λ1) E∗

ν (k2, λ2)×Mµν ,

Mµν = Mµν
1 + Mµν

2 ,

iMµν
1 = v̄(e+)(ieγν)

i

6q −m
(ieγµ)u(e−),

iMµν
2 = v̄(e+)(ieγµ)

i

6 q̃ −m
(ieγν)u(e−),

(2)

where q = p− − k1 = k2 − p+ and q̃ = p− − k2 = k1 − p+. Note the opposite orders of the

γµ and γν vertices in the M1 and the M2 amplitudes since the two photons attach to the

electron line in opposite order. Also note the bosonic symmetry between the two photons in

the final state: exchanging the photons is equivalent to exchanging the two diagrams, thus

Mµν
1 (k1, k2; p−, p+) = Mνµ

2 (k1 ↔ k2; p−, p+) =⇒ Mµν
net = Mνµ

net(k1 ↔ k2). (3)

For calculation purposes, it is convenient to eliminate the matrix denominators from the

amplitudes M1 and M2 using

1

6q −m
=

6q +m

q2 −m2
=

6q +m

t−m2
and

1

6 q̃ −m
=

6 q̃ +m

q̃2 −m2
=

6 q̃ +m

u−m2
, (4)
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hence

Mµν
1 =

−e2

t−m2
× v̄γν(6q +m)γµu and Mµν

2 =
−e2

u−m2
× v̄γµ(6 q̃ +m)γνu. (5)

Ward Identities

Before we go any further, lets check the Ward identities for the annihilation amplitude:

For the first photon we should have k1µMµν = 0, and for the second photon k2νMµν = 0.

Let’s start with the first photon and the first diagram. Multiplying the second factor in the

first eq. (5) by k1µ, we have

v̄γν(6q +m)γµu× k1µ = v̄γν(6p−−6k1 +m) 6k1u

= v̄γν(6p− +m) 6k1u 〈〈 since 6k1 6k1 = k21 = 0 〉〉

= v̄γν
(

2(p−k1)− 6k1(6p− −m)
)

u 〈〈 since 6p− 6k1 = 2(p−k1)−6k1 6p− 〉〉

= 2(p−k1)× v̄γνu 〈〈 since (6p− −m)u = 0 〉〉
(6)

where

(2p−k1) = k21 + p2− − (p− − k1)
2 = 0 + m2 − t. (7)

This factor on the last line of eq. (6) cancels the denominator of the Mµν
1 amplitude in eq. (5)

(except for the overall sign), and we are left with

Mµν
1 × k1µ = +e2 × v̄γνu . (8)

Note the non-zero right hand side — the first diagram does not obey the Ward identity all by

itself. As for the second diagram, we have

v̄γµ(6 q̃ +m)γνu× k1µ = v̄ 6k1(6k1−6p+ +m)γνu

= v̄ 6k1(−6p+ +m)γνu 〈〈 since 6k1 6k1 = k21 = 0 〉〉

= v̄
(

−2(p+k1) + (6p+ +m) 6k1
)

γνu

〈〈 since −6k1 6p+ = −2(k1p+)+ 6p+ 6k1 〉〉

= −2(p+k1)× v̄γνu 〈〈 since v̄(6p+ +m) = 0 〉〉,

(9)
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where

−2(p+k1) = (p+ − k1)
2 − p2+ − k21 = u − 0 − m2. (10)

Again, this factor cancels the denominator of the Mµν
2 amplitude in eq. (5) (but this time

without an extra sign), and we are left with

Mµν
2 × k1µ = −e2 × v̄γνu . (11)

Similar to the first diagram’s amplitude Mµν
1 , the second diagram’s amplitude Mµν

2 also does

not obey the Ward identity all by itself. However, the right hand sides of eqs. (8) and (11)

cancel each other, so the net amplitude does obey the Ward identity,

Mµν
net × k1µ = Mµν

1 × k1µ + Mµν
2 × k1µ = 0. (12)

This is an example of a general rule: The Ward identities does not work diagram by diagram,

but only for sums of all diagrams related by permutations of photonic vertices on the same

fermionic line — or for bigger sums, such as complete amplitudes to N -loop order for N =

0, 1, 2, . . ..

The Ward identity Mµν × k2ν = 0 for the second photon works similarly to the first. In

fact, thanks to the Bose symmetry (3) between the two photons, the two Ward identities are

equivalent to each other,

Mµν = Mνµ(k1 ↔ k2) =⇒
(

Mµν × k1µ = 0 ⇐⇒ Mµν × k2ν = 0

)

. (13)

Thus, for the second photon

Mµν
1 ×k2ν = −e2× v̄γµu 6= 0, Mµν

2 ×k2ν = +e2× v̄γµu 6= 0, but Mµν
net×k2ν = 0.

(14)
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Summing over the Spins and Polarizations

In a typical annihilation experiment, the initial electrons and positrons come from un-

polarized beams where both spin states are equally likely. Likewise, the photon detector is

sensitive to the outgoing photons’ momenta but it does not care about their polarization

states. To calculate the annihilation cross-section for such un-polarized process, we should

sum the |M|2 over the final photon polarizations and average over the spins of the initial

fermions.

Summing the |M|2 over the photon polarizations is explained in detail in my notes on

Ward identities. Thanks to the Ward identities, we can do it in terms of the Mµν amplitude

as
∑

λ1,λ2

|M|2 = +MµνM∗
µν . (15)

For the annihilation process at hand Mµν = Mµν
1 +Mµν

2 , so

∑

λ1,λ2

|M|2 = +MµνM∗
µν = Mµν

1 M∗
1µν + Mµν

2 M∗
2µν + 2ReMµν

1 M∗
2µν . (16)

Note that this formula does not need the Mµν
1 and Mµν

2 amplitudes to obey the Ward

identities by themselves, it is enough that the net amplitude Mµν
1 +Mµν

2 obeys the identities.

Specifically, for the Mµν
1 and Mµν

2 as in eqs. (5), we have

∑

λ1,λ2

|M|2 =
e4

(t−m2)2
× v̄γν(6q +m)γµu× ūγµ(6q +m)γνv

+
e4

(u−m2)2
× v̄γµ(6 q̃ +m)γνu× ūγν(6 q̃ +m)γµv

+
2e4

(t−m2)(u−m2)
× Re

(

v̄γν(6q +m)γµu× ūγν(6 q̃ +m)γµv
)

.

(17)

This formula takes care of summing over the photon polarizations, and now we need to

average the result over the initial fermions’ spins. As explained in my notes on Dirac traces,

∑

s1,s2

v̄(p+, s+)Γu(p−, s−)× ū(p−, s−)Γv(p+, s+) = Tr
(

(6p+ −m)Γ(6p− +m)Γ
)

, (18)
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and in a similar way we may show that for Γ′ 6= Γ we also have

∑

s1,s2

v̄(p+, s+)Γu(p−, s−)× ū(p−, s−)Γ
′v(p+, s+) = Tr

(

(6p+ −m)Γ(6p− +m)Γ′

)

. (19)

Applying these rules to averaging eq. (17) over the electron’s and positron’s spins gives us

|M|2 ≡ 1
4

∑

s
−
,s+

∑

λ1,λ2

|M|2

=
e4

(t−m2)2
× A11 +

e4

(u−m2)2
× A22 +

2e4

(t−m2)(u−m2)
× Re A12 ,

(20)

where

A11 = 1
4

∑

s
−
,s+

v̄(p+, s+)γ
ν(6q +m)γµu(p−, s−)× ū(p−, s−)γµ(6q +m)γνv(p+, s+)

= 1
4
Tr

(

(6p+ −m)γν(6q +m)γµ(6p− +m)γµ(6q +m)γν

)

, (21)

A22 = 1
4

∑

s
−
,s+

v̄(p+, s+)γ
µ(6 q̃ +m)γνu(p−, s−)× ū(p−, s−)γν(6 q̃ +m)γµv(p+, s+)

= 1
4
Tr

(

(6p+ −m)γµ(6 q̃ +m)γν(6p− +m)γν(6 q̃ +m)γµ

)

, (22)

A12 = 1
4

∑

s
−
,s+

v̄(p+, s+)γ
ν(6q +m)γµu(p−, s−)× ū(p−, s−)γν(6 q̃ +m)γµv(p+, s+)

= 1
4
Tr

(

(6p+ −m)γν(6q +m)γµ(6p− +m)γν(6 q̃ +m)γµ

)

. (23)

And now we need to calculate these big traces. . .

Traceology 1

Let’s start with the A11 trace. It looks rather formidable, but we may simplify it using

formulae

γµγµ = 4, γµ6aγµ = −2 6a, γµ6a6bγµ = 4(ab), γµ6a6b6cγµ = −2 6c6b6a (24)

from the homework#7. Indeed, a cyclic permutation of matrices inside the trace turns it into

A11 = 1
4
Tr

(

γν(6p+ −m)γν × (6q +m)× γµ(6p− +m)γµ × (6q +m)
)

(25)

5

http://www.ph.utexas.edu/~vadim/Classes/2020f/hw07.pdf


where thanks to eqs. (24) we have

γµ(6p− +m)γµ = γµ 6p−γµ + mγµγµ = −2 6p− + m× 4 = −2(6p− − 2m) (26)

and likewise

γν(6p+ −m)γν = −2(6p+ + 2m), (27)

hence

A11 = Tr
(

(6p+ + 2m)(6q +m)(6p− − 2m)(6q +m)
)

. (28)

Next, we expand the parentheses inside this trace and throw away terms with odd numbers

of momenta 6p or 6q. This eliminates 8 out of 16 terms, and leaves us with

A11 = Tr(6p+6q 6p−6q) + m2 × Tr(6p+6p−) − 4m2 × Tr(6q 6q)

+ 2× 2m2 × Tr(6p−6q) − 2× 2m2 × Tr(6p+6q) − 4m4 × Tr(1)

= 2× 4(p+q)(p−q) − 4(p+p−)(q
2) + m2 × 4(p+p−) − 4m2 × 4(q2)

+ 4m2 × 4(p−q) − 4m2 × 4(p+q) − 4m4 × 4.

= 8(p+q)(p−q) − 4(p+p−)× (q2 −m2) − 16m2 ×
(

q2 − (p−q) + (p+q) + m2
)

.
(29)

We may further simplify this formula by expressing all the momenta products in terms of

the Mandelstam’s variables s, t, and u. Using p2− = p2+ = m2 and k21 = k22 = 0, we have

q2 = (p− − k1)
2 = t, (30)

2p−p+ = (p− + p+)
2 − p2+ − p2− = s − 2m2, (31)

2k1p− = k21 + p2− − (k1 − p−)
2 = 0 + m2 − t, (32)

2k2p+ = k22 + p2+ − (k2 − p+)
2 = 0 + m2 − t, (33)

and hence

qp− = (p− − k1)p− = p2− − p−k1 = m2 + 1
2
(t−m2) = +1

2
(m2 + t), (34)

qp+ = (k2 − p+)p+ = p+k2 − p2+ = −1
2
(t−m2) − m2 = −1

2
(t+m2). (35)
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Consequently, on the last line of eq. (29), the last term vanishes —

q2 − (p−q) + (p+q) + m2 = t − 1
2
(t +m2) − 1

2
(t+m2) + m2 = 0 (36)

— while the remaining terms add up to

A11 = 8(p+q)(p−q) − 4(q2 −m2)× (p+p−)

= −2(t +m2)2 − 2(t−m2)× (s− 2m2 = −t− u)

= −2t2 − 4tm2 − 2m4 + 2t2 + 2tu − 2tm2 − 2um2

= 2tu − 6tm2 − 2um2 − 2m4

= 2(t−m2) (u− 3m2) − 8m4.

(37)

This completes our evaluation of the first trace.

As to the second trace A22, we could work it out through a similar calculation, but

fortunately there is a shortcut. The two diagrams (1) for the annihilation process are related to

each other by a crossing symmetry, which exchanges t ↔ u and also A11 ↔ A22. Consequently,

given eq. (37) for the first trace, the second trace follows as

A22(t, u) = A11(t ↔ u) = 2(u−m2) (t− 3m2) − 8m4. (38)

Traceology 2

Now consider the the third trace

A12 = 1
4
Tr

(

γν(6q +m)γµ(6p− +m)× γν(6 q̃ +m)γµ(6p+ −m)
)

(39)

which accounts for the interference between the two diagrams (1). Again, this is a rather

formidable trace, but we may simplify it using the relations

γµγµ = 4, γµ6aγµ = −2 6a, γµ6a6bγµ = 4(ab), γµ6a6b6cγµ = −2 6c6b6a. (24)

Indeed, consider the first 5 factors inside the trace A12, from the first γν to the second γν
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through everything in-between:

γν × (6q +m)γµ(6p− +m)× γν = m2 × γνγµγν + m× γν(6qγµ + γµ6p−)γν + γν(6qγµ6p−)γν
〈〈 in light of eqs. (24) 〉〉

= −2m2γµ + 4m(q + p−)
µ − 2 6p−γµ6q .

(40)

Plugging this formula into eq. (39) for the A12, we obtain

A12 = 1
4
Tr

(

γν(6q +m)γµ(6p− +m)γν × (6 q̃ +m)γµ(6p+ −m)
)

= Tr
([

m(q + p−)
µ − 1

2

(

m2γµ+ 6p−γµ6q
)

]

×
[

m
(

γµ6p+− 6 q̃γµ
)

+
(

6 q̃γµ6p+ − m2γµ)
])

〈〈 throwing away products of odd numbers of γ matrices 〉〉

= Tr
(

m(q + p−)
µ ×m

(

γµ 6p+− 6 q̃γµ
)

)

− 1
2
Tr

(

(

m2γµ+ 6p−γµ6q
)

×
(

6 q̃γµ6p+ − m2γµ
)

)

(41)

where the two traces on the bottom line evaluate to

Tr
(

m(q + p−)
µ ×m

(

γµ 6p+− 6 q̃γµ
)

)

= m2(q + p−)
µ × Tr

(

(p+ − q̃)γµ
)

= m2(q + p−)
µ × 4(p+ − q̃)µ

= 4m2
(

−(qq̃) + (qp+) − (q̃p−) + (p−p+)
)

(42)

and

Tr
(

(

m2γµ+ 6p−γµ6q
)

×
(

6 q̃γµ6p+ − m2γµ
)

)

=

= Tr
(

6p−γµ6q6 q̃γµ6p+
)

+ m2 Tr
(

γµ6 q̃γµ6p+
)

− m2 Tr
(

6p−γµ6qγµ
)

−m4 Tr
(

γµγµ
)

〈〈 using γµ6q6 q̃γµ = 4(qq̃), γµ6 q̃γµ = −2 6 q̃, γµ6qγµ = −2 6q, and γµγµ = 4 〉〉

= 4(qq̃)× Tr(6p− 6p+) − 2m2 × Tr(6 q̃ 6p+) + 2m2 × Tr(6p− 6q) − 4m4 × Tr(1)

= 16(qq̃)(p−p+)− 8m2(q̃p+) + 8m2(qp−) − 16m4.

(43)

Combining the two traces, we arrive at

A12 = −8(qq̃)(p−p+) + 4m2
(

−(qq̃) + (q + q̃)µ(p+ − p−)µ + (p−p+)
)

+ 8m4. (44)

To further simplify this rather messy formula, we note that

q + q̃ = (p− − k1) + (k1 − p+) = p− − p+, (45)
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hence

(q + q̃)µ(p+ − p−)µ = −(p− − p+)
2 = 2(p−p+) − 2m2 = s − 4m2, (46)

while

q̃q = (p− − k2)(p− − k1) = p2− − p−(k1 + k2 = p− + p+) + k1k2

= k1k2 − p−p+ = 1
2
s − 1

2
(s− 2m2) = m2.

(47)

Consequently, the RHS of eq. (44) simplifies to

A12 = −8m2(p−p+) + 4m2
(

−m2 + (s− 4m2) + (p−p+)
)

+ 8m4

= −4m2(s− 2m2) + 4m2
(

−m2 + s − 4m2 + 1
2
s − m2) + 8m4

= 2m2s − 8m4 .

(48)

However, for combining this trace with the other two traces A11 and A22 it would be more

convenient to re-express eq. (48) in terms of the other two Mandelstam’s variables t and u

rather than s. Thus, using s = 2m2 − t− u = (m2 − t) + (m2 − u) we write

A12 = −2m2(t−m2) − 2m2(u−m2) − 8m4. (49)

Annihilation Summary

Having worked out the big traces, let’s plug them back into eq. (20):

|M|2 =
e4

(t−m2)2
×

(

2(t−m2)(u− 3m2) − 8m4
)

+
e4

(u−m2)2
×
(

2(u−m2)(t− 3m2) − 8m4
)

+
2e4

(t−m2)(u−m2)
×

(

−2m2(t−m2) − 2m2(u−m2) − 8m4
)

= 2e4











u− 3m2

t−m2
+

t− 3m2

u−m2
− 2m2

u−m2
− 2m2

t−m2

− 4m4

(t−m2)2
− 4m4

(u−m2)2
− 8m4

(t−m2)(u−m2)
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= 2e4











u−m2

t−m2
+

t−m2

u−m2
− 4m2

(

1

t−m2
+

1

u−m2

)

− 4m4

(

1

t−m2
+

1

u−m2

)2











, (50)

or more compactly

|M|2 = 2e4

[

u−m2

t−m2
+

t−m2

u−m2
+ 1 −

(

1 +
2m2

t−m2
+

2m2

u−m2

)2
]

. (51)

This is our final result; the rest is kinematics.

Annihilation Kinematics

In the center of mass frame, pµ∓ = (E,±p) where E = +
√

p2 +m2, and kµ1,2 = (ω,±k)

where ω = |k| = E. Consequently,

s = 4E2,

t = −(p− k)2 = −p2 − E2 + 2|p|E cos θ,

u = −(p+ k)2 = −p2 − E2 − 2|p|E cos θ,

t−m2 = −2E2 + 2|p|E cos θ = −2E(E − |p| cos θ),

u−m2 = −2E2 − 2|p|E cos θ = −2E(E + |p| cos θ),

(52)

and hence

u−m2

t−m2
+

t−m2

u−m2
+ 1 =

E + |p| cos θ
E − |p| cos θ +

E − |p| cos θ
E + |p| cos θ + 1

=
3E2 + p2 cos2 θ

E2 − p2 cos2 θ

=
3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
, (53)

1

t−m2
+

1

u−m2
=

−1

2E

(

1

E − |p| cos θ +
1

E + |p| cos θ

)

=
−1

2E
× 2E

E2 − p2 cos2 θ
=

−1

m2 + p2 sin2 θ
, (54)
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1 +
2m2

t−m2
+

2m2

u−m2
=

p2 sin2 θ −m2

p2 sin2 θ +m2
. (55)

Plugging these formulae into eq. (51), we get

|M|2 = 2e4

[

3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
−

(

p2 sin2 θ −m2

p2 sin2 θ +m2

)2
]

, (56)

and hence the partial cross section of annihilation

dσ(e+e− → γγ)

dΩc.m.
=

|k|
|p|

|M|2
64π2s

=
α2

8E|p| ×
[

3m2 + p2(3 + cos2 θ)

m2 + p2 sin2 θ
−

(

p2 sin2 θ −m2

p2 sin2 θ +m2

)2
]

.

(57)

In the limit of non-relativistic non-relativistic electron and positron, |p| ≪ m, the expres-

sion in the square brackets becomes 3− (−1)2 = 2, hence isotropic partial cross section

dσ(slow e+e− → γγ)

dΩc.m.
=

α2

4m|p| . (58)

And the total cross section in this limit is

σtot(slow e+e− → γγ) =
4π

2
× α2

4m|p| =
πα2

2m|p| , (59)

where the total solid angle is 4π/2 because of 2 identical photons in the final state.

In the opposite limit of ultra-relativistic e− and e+ with |p| ≈ E ≫ m, we have

[

· · ·
]

≈ 3 + cos2 θ

sin2 θ
− 1 =

2(1 + cos2 θ)

sin2 θ
(60)

and hence highly anisotropic cross section

dσ(fast e+e− → γγ)

dΩc.m.
≈ α2

4E2
× 1 + cos2 θ

sin2 θ
. (61)

Note how this cross-section is strongly peaked in the forward direction θ = 0 where one photon

continues the electron’s motion while the other continues the positron’s motion.
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According to eq. (61), the total annihilation cross-section

σtot(fast e
+e− → γγ) = 2π

π/2
∫

0

dθ sin θ
dσ

dΩcm
(62)

diverges at small angles, but that’s an artefact of the approximation (60) becoming inaccurate

at small angles where p2 sin2 θ <∼ m2. Instead, for small angles we have

[

· · ·
]

=
4p2

m2 + p2θ2
+ O(1) (63)

and consequently

dσ(fast e+e− → γγ)

dΩc.m.
≈ α2

2E2
×

(

p2

m2 + p2θ2
+ O(1)

)

. (64)

This cross-section is strongly peaked in the forward direction, but it does not diverge; instead,

it integrates to

σtot(fast e
+e− → γγ) =

πα2

E2
×
(

log
E

m
+ O(1)

)

. (65)

A more accurate approximation for both large and small angles yields we get the total cross-

section

σtot(fast e
+e− → γγ) =

πα2

E2
×

(

log
4E

m
− 1

2
+O(m2/E2)

)

. (66)

Compton Scattering

Compton scattering of an electron and a photon e−γ → e−γ is related by crossing sym-

metry to the e−e+ → γγ annihilation. Indeed, at the tree level there are two diagrams

q

e−

e−′

γ

γ′

+ q̃

e−

e−′

γ

γ′

(67)
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which are obviously related by the s ↔ t crossing to the annihilation diagrams (1). Hence,

given eq. (51) for the annihilation, we may immediately write down a similar formula for the

Compton scattering without doing any work. All we need is to exchange s ↔ t in eq. (51)

and change the overall sign because we cross one fermion, thus

|MCompton|2 = 2e4

[

−u−m2

s−m2
− s−m2

u−m2
− 1 +

(

1 +
2m2

s−m2
+

2m2

u−m2

)2
]

. (68)

This is it, except for the kinematics.

The Compton scattering is usually studied in the lab frame where the initial electron is at

rest, pµ = (m, 0). In this frame, the initial and the final photon energies ω and ω′ are related

to photon’s scattering angle θ via the Compton’s formula

1

ω′
=

1

ω
+

1− cos θ

me
, (69)

originally written by Arthur Compton in terms of the photon’s wavelengths as

λ′ − λ =
2πh̄

mec
× (1− cos θ). (70)

According to this formula, there is an upper limit on the energy of the final photon for any fixed

θ 6= 0: regardless of the initial energy ω, the final energy ω′ can never exceed me/(1− cos θ).

The Compton’s formula follows from the energy–momentum conservation p′ = p+ k− k′,

which leads to

p′2 = (p+ k − k′)2 = p2 + k2 + k′2 + 2pk − 2pk′ − 2kk′. (71)

In light of the mass-shell conditions p′2 = p2 = m2 and k′2 = k2 = 0, this means

2pk − 2pk′ − 2kk = 0. (72)

In the lab frame pk = mω, pk′ = mω′, while kk′ = ωω′ − k · k′ = ωω′(1 − cos θ), so eq. (72)

13



becomes

2mω − 2mω′ − 2ωω′(1− cos θ) = 0, (73)

and after dividing every term by 2ωω′m we get the Compton formula

1

ω′
− 1

ω
− 1− cos θ

m
= 0. (69)

The Mandelstam variables s and u in the lab frame are

s ≡ (k + p)2 = (ω +m)2 − (k+ 0)2 = 2ωm + m2,

u ≡ (k′ − p)2 = (ω′ −m)2 − (k′ − 0)2 = −2ω′m + m2,
(74)

and hence

s − m2 = +2mω, u − m2 = −2mω′. (75)

Plugging these values into eq. (68), we have

−u−m2

s−m2
− s−m2

u−m2
= +

ω′

ω
+

ω

ω′
, (76)

2m2

s−m2
+

2m2

u−m2
=

m

ω
− m

ω′

〈〈 by the Compton formula 〉〉

= −(1− cos θ), (77)

−1 +

(

1 +
2m2

s−m2
+

2m2

u−m2

)2

= −1 +
(

1 − 1 + cos θ
)2

= −1 + cos2 θ = − sin2 θ, (78)

and therefore

|MCompton|2 = 2e4 ×
(

ω′

ω
+

ω

ω′
− sin2 θ

)

. (79)

Finally, we need the phase space factor for the lab frame. We may calculate it directly from

the general phase space rules — see my notes on the subject, — but there is a shortcut relating

14
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the lab-frame and the center-of-mass-frame scattering angles to each other via Mandelstam

variables t and s. In the lab frame

t = 2m2 − s − u = 2mω′ − 2mω, (80)

hence for fixed ω,

dt = 2m× dω′(θlab) = 2ω′2 × d cos θlab , (81)

where the second equality stems from the Compton formula (69). On the other hand, in the

center-of-mass frame,

t = −2ω2
cm(1− cos θcm) =⇒ dt = 2ω2

cm × d cos θcm . (82)

Comparing eqs. (81) and (82), we immediately see that

ω′2
lab × d cos θlab = ω2

cm × d cos θcm (83)

and consequently

ω′2
lab × dΩlab = ω2

cm × dΩcm . (84)

The ωcm in this formula is the photon’s energy in the center-of-mass frame, which obtains

from the s invariant as

√
s = ωcm +

√

ω2
cm +m2

⇐
=

ω2
cm + m2 = (

√
s− ωcm)

2 = s + ω2
cm − 2

√
sωcm

⇐
=

ωcm =
s−m2

2
√
s

.

(85)

Plugging this formula into eq. (84), we arrive at

ω′2
lab × dΩlab =

(s−m2)2

4s
× dωcm =

m2ω2
lab

s
× dΩcm (86)
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or

dΩcm

s
=

(

ω′

mω

)2

lab

× dΩlab . (87)

In the center of mass frame the partial cross-section obtains as

dσ =
|M|2
64π2

× dΩcm

s
. (88)

In the lab frame, the cross-section is exactly the same, but it’s relation to the lab-frame

scattering angle follows from eq. (87),

dσ =
|M|2
64π2

× ω′2

m2ω2
× dΩlab , (89)

hence

dσ

dΩlab

=
|M|2
64π2

× ω′2

m2ω2
. (90)

Finally, plugging the mod-squared amplitude (79) into this formula gives us the Klein–Nishina

formula:

dσCompton

dΩlab

=
α2

2m2
e
× ω′2

ω2
×
(

ω′

ω
+

ω

ω′
− sin2 θ

)

(91)

where ω′ is given by the Compton formula (69).

For low photon energies ω ≪ me, the Compton’s formula gives ω′ ≈ ω, and the Klein–

Nishina cross-section (91) becomes the good old Thompson cross-section

dσCompton

dΩlab

→ dσThompson

dΩlab

=
α2

2m2
e
× (2− sin2 θ = 1 + cos2 θ), (92)

and the total cross-section is

σThompson
total =

8π

3

α2

m2
e

≈ 0.663 barn. (93)

On the other hand, for very high photon energies ω ≫ me and θ 6≈ 0, we have

ω′ ≪ ω =⇒ ω′

ω
+

ω

ω′
− sin2 θ ≈ ω

ω′
, (94)
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and the Klein–Nishina formula becomes

dσCompton

dΩlab

≈ α2

2m2
e
× ω′

ω
≈ α2

2me × ω
× 1

1− cos θ
. (95)

This approximation is not accurate at small angles θ <∼
√

2me/ω for which ω′ 6≪ ω, so the

cross section does not really diverge for θ → 0. Instead, at small angles we have large but

finite partial cross-section

dσCompton

dΩlab

≈ α2

me × ω
× θ4 − 2θ2(2me/ω) + 2(2me/ω)

2

(θ2 + (2me/ω))3
6→ ∞ (96)

and hence finite total cross-section

σCompton
total

≈ πα2

me × ω
×

(

log
2ω

me
+

1

2

)

. (97)
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