
Relativistic Causality

Relativistic Causality forbids any matter or any signal to travel outside of the future light

cone of its origin. As I have explained last lecture, for a quantum field theory this means that

any two measurable local operators Ô1(x) and Ô2(y) located at a spacelike interval (x− y)2

from each other must commute, [Ô1(x), Ô2(y)] = 0. In these notes I shall first explain what

I mean by the measurable local operators, then prove the relativistic causality for the free

scalar field theory, and eventually explain how it works for the non-free fields.

Let’s start with the local operators. In a QFT, such operators are constructed by taking

products (or other functions) of the fields and their derivatives, all taken at the same point x.

For example,

Φ̂(x), Φ̂2(x), V (Φ̂(x)), ∂µΦ̂(x), ∂µ∂νΦ̂(x), f(Φ̂(x))∂µ(x)Φ̂(x)∂νΦ̂(x), . . . ; (1)

in theories with multiple fields you may also have combinations like

Aµ(x)Φ†(x)∂µΦ̂(x), . . . . (2)

But despite the infinite variety of such local operators, it is easy to make all any such operator

at x commute with any operator at y for a spacelike x − y: All we need is quantum fields

themselves commuting with each other at spacelike separation:

for any x, y such that (x− y)2 <, 0 : (3)

[Φ̂(x), Φ̂2(y)] = 0, [Φ̂(x), Âµ(y)] = 0, [Âµ(x), Âν(y)] = 0, . . . .

Indeed, if the fields themselves at x and at y commute with each other then all their derivatives

also commute. For example, if [Φ̂(x), Φ̂(y)] = 0 — and not just for some fixed x and y but

also for some neighborhoods of x and y, — then

[∂µΦ̂(x), ∂ν∂λΦ̂(y)] =
∂

∂xµ
∂

∂yν
∂

∂yλ
[Φ̂(x), Φ̂(y)] =

∂

∂xµ
∂

∂yν
∂

∂yλ
0 = 0. (4)

And now that we have all fields and their derivatives at x commute with all fields and their

derivatives at y, the Leibniz rule tells us that all products of the fields and derivatives at x

1



commute with all products of fields and derivatives at y, for example

[∂µΦ̂(x), Φ̂(y)∂λ∂νΦ̂(y)] = [∂µΦ̂(x), Φ̂(y)]∂λ∂νΦ̂(y) + Φ̂(y)[∂µΦ̂(x), ∂λ∂νΦ̂(y)] = 0 + 0 = 0.

(5)

The bottom line is: If all the quantum fields commute at spacelike separations as in eq. (3),

then all the local operators such as (1) or (2) also commute at spacelike separations, — which

is precisely what we need for the relativistic causality.

A few words about measurable and un-measurable fields and operators. The bosonic

quantum fields — such as the scalar field Φ̂(x) or the electromagnetic fields F̂ µν(x) — can

have classical-like expectation values
〈

Φ̂(x)
〉

,
〈

F̂ µν
〉

(x), etc., which we can measure experi-

mentally, so these fields are measurable. But the fermionic fields — such as the the electron

fields Ψ̂α(x) and Ψ̂†
α(x) we shall study later in class — are not measurable by themselves.

Only the bilinear combinations of such fields — such as the current Ĵµ(x) = Ψ̂(x)γµΨ̂(x) —

can be measured experimentally. In general, local measurable operators are products of even

numbers of fermionic fields and their derivatives — as well as any number of bosonic fields

and their derivatives,

measurable Ô(x) =

evenN
∏

i=1

(

Fi(x) or ∂Fi(x) or ∂∂Fi(x) or · · ·
)

×

×

anyM
∏

i=1

(

Bi(x) or ∂Bi(x) or ∂∂Bi(x) or · · ·
)

.

(6)

Consequently, to assure that all such measurable operators commute at spacelike-separated

points, the fermionic fields should either commute or anticommute with each other. Alto-

gether, we need

For any bosonic fields B̂1 and B̂2, and any fermionic fields F̂1 and F̂2,

when (x− y)2 < 0,

B̂1(x)× B̂2(y) = +B̂2(y)× B̂1(x), (7)

F̂i(x)× B̂j(y) = +B̂j(y)× F̂i(x), (8)

F̂1(x)× F̂2(y) = −F̂2(y)× F̂1(x). (9)
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By itself, the relativistic causality is consistent with either ‘+’ or ‘−’ sign on the last line (9),

but other considerations fix that sign to be negative. Thus, at spacelike separations, the

fermionic fields anticommute rather than commute with each other.

In October, we shall study the fermionic fields and their anticommutation in great detail.

But for now, let’s focus on the bosonic fields and see how and why they commute at spacelike

distances.

Relativistic Causality for the Free Scalar Field

Let’s prove the relativistic causality for the free scalar field. That is, let’s prove that

[Φ̂(x), Φ̂(y)] = 0 whenever (x− y)2 < 0. (10)

As we saw in an earlier lecture, a free scalar field expands into creation and annihilation

operators according to

Φ̂(x) =

∫

d3k

(2π)32ωk

(

e−ikx â
k

+ e+ikx â†
k

)k0=+ωk

. (11)

Expanding both Φ̂(x) and Φ̂(y) in eq. (10) in this manner, we get

[Φ̂(x), Φ̂(y)] =

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

















e−ikx−ik′y × [â
k
, â

k′]

+ e−ikx+ik′y × [â
k
, â†

k′]

+ e+ikx−ik′y × [â†
k
, â

k′]

+ e+ikx+ik′y × [â†
k
, â†

k′]

















. (12)

In the expansion (11), the operators â
k
and â†

k
are all evaluated at t = 0 — or equivalently

in the Schrödinger picture, — so they obey the equal-time commutation relations

[â
k
, â

k′] = [â†
k
, â†

k′] = 0,

[â
k
, â†

k′] = +2ωk(2π)
3δ(3)(k− k′),

[â†
k
, â

k′] = −2ωk(2π)
3δ(3)(k− k′).

(13)
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Plugging these commutators into eq. (12), we get

(· · ·) = 0 + 2ωk(2π)
3δ(3)(k−k′)×e−ikx+ik′y − 2ωk(2π)

3δ(3)(k−k′)×e+ikx−ik′y + 0 (14)

and hence

[Φ̂(x), Φ̂(y)] =

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

2ωk(2π)
3δ(3)(k− k′)×

(

e−ikx+ik′y − e+ikx−ik′y
)

=

∫

d3k

(2π)32ωk

(

e−ikx+iky − e+ikx−iky
)k0=+ωk

.

(15)

For future reference let us define

D(zµ)
def
=

∫

d3k

(2π)32ωk

[

e−ikµzµ
]k0=+ωk

, (16)

then in terms of this D(z), eq. (15) amounts to

[Φ̂(x), Φ̂(y)] = D(x− y) − D(y − x) (17)

The RHS of this formula happens to vanish for spacelike x−y, and that’s what establishes

the relativistic causality for the free scalar field Φ̂(x). To see how this works, we need a couple

of lemmas:

Lemma 1: D(z) is invariant under orthochronous Lorentz transforms,

∀Lµ
ν ∈ O+(3, 1), D(Lµ

νz
ν) = D(zµ). (18)

Proof: Let z′µ = Lµ
νz

ν for some orthochronous Lorentz transform L, and let k′µ = Lµ
νk

ν for

the same L. Then k′µz′µ = kνzν and hence exp(−ik′z′) = exp(−ikz). At the same time, the

integration measure in eq. (16) is invariant under the k → k′ change of variables,

d3k′

(2π)32ωk′

=
d3k

(2π)32ωk

, (19)

and the integration range — the entire mass shell k0 = +ωk — is also invariant. Consequently,

D(z′) =

∫

d3k′

(2π)32ωk′

e−ik′z′ =

∫

d3k

(2π)32ωk

e−ikz = D(z), (20)

quod erat demonstrandum.
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Note that the integration range in eq. (16) — the mass shell k0 = +ωk — is invariant

under the orthochronous Lorentz symmetries, but not under the time reversal. Consequently,

D(−zµ) 6= D(+zµ); instead D(−zµ) = D∗(+zµ).

Lemma 2: If a 4-vector zµ is spacelike, zµzµ < 0, then there exists an orthochronous Lorents

transform L such that Lµ
νz

ν = −zµ.

Proof: for a spacelike vector there exists a Lorentz boost B which eliminates its time compo-

nent, z′µ = Bµ
νz

ν = (0, z′). Indeed, let

v = −
z0z

z2
; (21)

for a spacelike zµ with |z0| < |z| we have |v| < 1 (or in c 6= 1 units |v| < c), so let B be the

active Lorentz boost by the velocity v. Consequently,

(z′)0 = γv
(

z0 + v · z
)

= γv

(

z0 −
z0z

z2
· z

)

= 0. (22)

Next, let R be a 180◦ space rotation around some axis ⊥ to the z′, then z′′ = R′ = (0,−z′) =

−z′. Finally, let’s boost back by velocity −v, so that z′′′ = B−1z′′.

Altogether, z′′′ = B−1z′′ = B−1Rz′ = B−1RBz, so we may identify L = B−1RB; by

construction, L is an orthochronous Lorentz symmetry, in fact it’s a continuous Lorentz sym-

metry, L ∈ SO+(3, 1). At the same time,

Bz′′′ = z′′ = −z′ = −Bz =⇒ z′′′ = −z, (23)

quod erat demonstrandum.

BTW, orthochronous Lorentz symmetries sending zµ into −zµ exist only for spacelike zµ.

For a timelike zµ, a Lorentz symmetry turning it into −zµ would involve a time reversal rather

than be orthochronous. Specifically, for a timelike z, L = B̃−1TB̃ where T is time reversal

T (z0, z) = (−z0,+z) while B̃ is a Lorentz boost to the rest frame of the timelike vector zµ,

z′ = B̃z = (z′0, 0).

Now let’s go back to eq. (17) and use the Lemmas 1–2. Identifying x− y as z, we see that

for a spacelike x − y there is an orthochronous Lorentz transform turning x − y into y − x.
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But D is invariant under all such transforms, hence D(x− y) = D(y − x). Consequently, the

RHS of eq. (17) vanishes, so the commutator on the LHS must also vanish,

[Φ̂(x), Φ̂(y)] = 0 for any spacelike interval x− y. (24)

And this completes the proof of relativistic causality for the free scalar field.

Let me conclude this section with a few notes of the D function. For z0 = 0 we have

D(z) =

∫

d3k

(2π)32ωk

eik·z, (25)

and as a Fourier transform of a real symmetric function 1/2ωk this integral is real for any

z. Consequently, by invariance under orthochronous Lorentz transforms, for any spacelike z,

D(z) is real.

On the other hand, for z = (t, 0) we have

D(t, 0) =

∫

d3k

(2π)32ωk

e−itωk , (26)

which is complex rather than real. Also D(−t, 0) is a complex conjugate of D(+t, 0). Con-

sequently, for any timelike z, D(z) is complex and D(−z) = D∗(+z) instead of D(+z). In

terms of eq. (17), this means that

for a timelike x− y, [Φ̂(x), Φ̂(y)] = 2i Im(D(x− y)) 6= 0. (27)

Thus, for a timelike x− y we may send a signal from x to y or from y to x, depending on the

sign of y0 − x0. But for a spacelike x− y no signal would propagate between x and y.

Interpretation

In eq. (17), the commutator [Φ̂(x), Φ̂(y)] vanishes for spacelike x − y due to cancellation

between the D(x − y) and the D(y − x) terms on the RHS. In our derivation — eqs. (12)

through (15), — the D(x− y) term came from annihilation operators â
k
in the expansion of

the Φ̂(x) and the matching creation operators â†
k
in the expansion of Φ̂(y). Thus, we may
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say that the D(x − y) term stems from particles being created at y, traveling from y to x,

and eventually being annihilated at x. On the other hand, the −D(y − x) term comes from

the creation operators â†
k
in Φ̂(x) and the matching annihilation operators â

k
in Φ̂(y), so we

can say that it stems from the particles being created at x, traveling from x to y, and being

annihilated at y.

x

y

+D(x− y)

−D(y − x)

(28)

At spacelike x − y both processes are superluminal: In one process, the particles move FTL

but forward in time, in the other — FTL and backward in time. Both processes are unphysical

but seems to contribute a non-zero effect ±D(x − y). However, the two processes precisely

cancel each other, and that’s what provides for the relativistic causality: no net signal can

travel either form x to y or from y to x.

Note that we need the quantum field theory to achieve the cancellation between particles

moving from x to y and from y to x. In a relativistic quantum mechanics of a single particle,

there is only one direction of travel and hence no cancellation. Instead, there is a small but

non-zero amplitude for a faster-then light travel, as you will see in the homework#3. In fact,

the amplitude you should get in problem 2 is related to the D function as

U(x → y) = 2i
∂

∂t
D(y − x) where t = y0 − x0. (29)

The picture of relativistic causality stemming from cancellation between particles traveling

in both directions of time becomes more mysterious when we consider the charged scalar fields

Φ̂(x) and Φ̂†(x). As we saw last lecture, the free fields expand into creation and annihilation

operators as

Φ̂(x) =

∫

d3k

(2π)32ωk

(

e−ikx â
k

+ e+ikx b̂†
k

)k0=+ωk

, (30)
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Φ̂†(x) =

∫

d3k

(2π)32ωk

(

e−ikx b̂
k

+ e+ikx â†
k

)k0=+ωk

.

Given the equal-time commutation relations between the creation and the annihilation oper-

ators, we immediately see that

[Φ̂(x), Φ̂(y)] = 0 and [Φ̂†(x), Φ̂†(y)] = 0 for any x and y, (31)

but the other commutators [Φ̂†(x), Φ̂(y)] and [Φ̂(x), Φ̂†(y)] are non-trivial. Proceeding simi-

larly to what we did to the real quantum field, we arrive at

[Φ̂†(x), Φ̂(y)] = [Φ̂(x), Φ̂†(y)] = D(x− y) − D(y − x), (32)

which vanishes for the spacelike x−y but not for timelike x−y. Focusing on the [Φ̂†(x), Φ̂(y)]

commutator, we have the +D(x − y) term stemming from the b̂
k
operators in Φ̂†(x) and

matching b̂†
k
operators in Φ̂(y), while the −D(y − x) term stems from the â†

k
operators in

Φ̂†(x) and matching â†
k
in Φ̂(y). Thus, pictorially the particles travel from y to x while the

antiparticles travel from x to y,

x

y

particles

antiparticles

(33)

In particular, for x0 > y0 the particles travel forward in time while the antiparticles travel

backward in time. However, for spacelike x − y both particles and antiparticles move FTL,

and who is going forward in time and who backward is relative to a frame of reference, so the

two effects precisely cancel each other. And that’s how the relativistic causality works for the

charged scalar fields.
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Interacting Field Theories

Thus far, we have seen how relativistic causality works for the free scalar fields. Later in

class (second half of October), I shall discuss the spinor fields — like the electron field — in

some detail; in particular, here are my notes on the relativistic causality for the spinor fields.

As for the higher-spin bosonic or fermionic fields, they work similarly to the scalar or spinor

fields — except for a messier algebra — so I am not going to dwell on them.

Instead, let us consider how the relativistic causality works for the interacting quantum

field theories. For simplicity, let’s assume the interactions are week enough to be treated as

perturbations. In relativistic QFTs all interactions are local — they happen at a particular

point z, although z could be anywhere in spacetime. Consequently, a signal can travel from

some point x to another point y either directly or via a chain of intermediate points z1, . . . , zn

where some interaction modifies the signal. That is:

ti
m
e

⋆x

∗z1

∗z2

∗z3

∗zn−1

∗zn

⋆ y

⋆ A signal is emitted at point x.

• Free propagation of the signal from x to z1.

By free propagation I mean propagates as in the

free field theory without interactions.

∗ Local interaction at z1

• Free propagation from z1 to z2.

∗ Local interaction at z2.

• Free propagation from z2 to z3.

— . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Free propagation from zn−1 to zn.

∗ Local interaction at zn.

• Free propagation from zn to y.

⋆ The signal is detected at y.

By relativistic causality of the free field theory, every free propagation step must lie in the
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future light cone, thus

z01 − x0 > |z1 − x| ,

z02 − z01 > |z2 − z1| ,

z03 − z02 > |z3 − z2| ,

. . . . . . . . . . . . . . . . . . . . . . . . . .

z0n − z0n−1 > |zn − zn−1| ,

y0 − z0n > |y − zn| .

(34)

Totaling all these inequalities, we immediately get

y0 − x0 > |z1 − x| + |z2 − z1| + · · · |zn − zn−1| + |y − zn| > |y − x| , (35)

which means that the entire route from x to y lies within the future light cone. In other words,

a signal can propagate only to points y within the future light cone from the origin point x,

and this is precisely what the relativistic causality requires.

The bottom line is, if the free quantum field theory respects the relativistic causality and

if all the interactions are local, then the perturbation theory — to all orders — also respects

the relativistic causality.

Beyond the perturbation theory, proving relativistic causality of the non-perturbative

effects is much harder, and I do not think this has ever been done for the general case.

However, all the known non-perturbative effects in quantum field theories happen to respect

the relativistic causality.
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