
Vacuum Energy and Effective Potentials

Quantum field theories have badly divergent vacuum energies. In perturbation theory,

the leading term is the net zero-point energy

Ezero point =
∑

particle

species

∑

p,s

Ep,s ×
±1

2
(1)

where the ± sign is + for bosons and − for fermions, while the sub-leading terms follow from

the interactions between the quantum fields. However, as long as the vacuum energy remains

a constant, it does not have any observable effects besides renormalizing the cosmological

constant Λ. Consequently, most of the time we do not pay any attention to the vacuum

energy or its divergences.

But sometimes the vacuum energy depends on some parameters of the theory that we

may vary, and then ∆Evacuum acts as an effective potential for those parameters. For exam-

ple, let’s put the EM fields in a small cavity, which gives them a discrete spectrum of modes

(p, s) instead of the continuum. Consequently, the EM field in the cavity has a different net

zero-point energy density than in infinite space, but the difference is finite,

Ezero point

volume

∣

∣

∣

∣

cavity

= divergent constant + finite ∆E(cavity size). (2)

This finite difference — called the Casimir effect — has observable consequences such as

attractive force between two parallel plates at small distances from each other,

Fc = −π2h̄c

240
× Area

distance4
, (3)

see Wikipedia article for details.

In these notes I would like to focus on different effect — discovered by Sidney Coleman

and Eric Weinberg — in which the fields remain in infinite volume but their masses change

due to interaction with a non-zero vacuum expectation value 〈ϕ〉 of some scalar field. The

zero point energies of the fields depend on their masses, and the net vacuum energy density

acts as an effective potential for the ϕ field; it is this effective potential that the VEV 〈φ〉
seeks to minimize.
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For example, consider a theory of two scalar fields ϕ and Φ with classical Lagrangian

L = 1
2(∂µϕ)

2 − V0(ϕ) +
1
2(∂µΦ)

2 − m2
0

2
Φ2 − g

4
ϕ2Φ2. (4)

Suppose V0(ϕ) ≡ 0 so the ϕ field is massless and does not interact with itself, only with

the other field Φ. Classically, the vacuum expectation value 〈ϕ〉 cannot be determined, so

let us allow for a completely general (but x–independent) 〈ϕ〉 and see how it affects the net

zero-point energy of the system.

Since ϕ does not interact with itself, the shifted field δϕ(x) = ϕ(x)−〈ϕ〉 remains massless

regardless of the VEV 〈ϕ〉. On the other hand, the 〈ϕ〉 does affect the mass of the other

field Φ,

L ⊃ −M2

2
× Φ2 for M2 = m2

0 +
g

2
× 〈ϕ〉2 . (5)

Consequently, the zero-point energy of the δϕ field remains constant, but the zero-point

energy of Φ depends on the M2 and hence on the 〈ϕ〉, so let’s calculate this energy and its

〈ϕ〉–dependence.

In a box of finite volume L3 particle momenta are discrete and

Ezero point = +
1

2

∑

p

√

M2 + p2 . (6)

For large L, the momenta p have a uniform density (L/2π)3 in the momentum space, thus

∑

p

−−−→
L→∞

L3 ×
∫

d3p

(2π)3
, (7)

so the density of the zero-point energy obtains from the momentum integral

E def
=

Ezero point

volume
=

1

2

∫

d3p

(2π)3

√

M2 + p2 . (8)

We are interested in the dependence of this energy density on the VEV 〈ϕ〉, so let’s focus

on the difference

∆E(〈ϕ〉) def
= E(〈ϕ〉) − E(0) =

1

2

∫

d3p

(2π)3

(

√

M2(〈ϕ〉) + p2 −
√

m2
0 + p2

)

. (9)

It is this difference that acts as the effective potential for the ϕ field.
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Before we try to evaluate the integral (9), let us re-write it as a 4D momentum integral.

The difference of any two energies E1 and E2 can be written as

E2 − E1 =

E2
2

∫

E2
1

dE2

2E
=

E2
2

∫

E2
1

dE2 ×
+∞
∫

−∞

dp4
2π

1

E2 + p24
=

+∞
∫

−∞

dp4
2π

E2
1

∫

E2
2

dE2 1

E2 + p24

=

+∞
∫

−∞

dp4
2π

log
E2
2 + p24

E2
1 + p24

Plugging this formula into eq. (9) gives us

∆E =
1

2

∫

d3p

(2π)3

∫

dp4
2π

log
M2 + p

2 + p24
m2

0 + p2 + p24
=

1

2

∫

d4pE
(2π)4

log
M2 + p2E
m2

0 + p4E
(10)

where pµE = (p, p4) acts as a 4D Euclidean momentum. To clarify the physical meaning of

this formula, let’s expand the logarithm in the integrand into powers of

M2 − m2
0 =

g 〈ϕ〉2
2

(11)

and hence into powers of 〈ϕ〉,

log
M2 + p2E
m2

0 + p2E
=

∞
∑

n=1

(−1)n−1

n
× (g2 〈ϕ〉

2)n

(p2E +m2
0)

n
. (12)

Consequently,

∆E =
1

2

∫

d4pE
(2π)4

∞
∑

n=1

(−1)n−1

n
× (g2 〈ϕ〉

2)n

(p2E +m2
0)

n

=
∞
∑

n=1

〈ϕ〉2n
2n× 2n

×
∫

d4pE
(2π)4

(−1)n−1gn

(p2E +m2
0)

n

(13)

or in terms of Minkowski 4–momentum pµ,

∆E =
∞
∑

n=1

i 〈ϕ〉2n
2n× 2n

×
∫

d4p

(2π)4
(−ig)n ×

(

i

p2 −m2
0 + i0

)n

. (14)

For each n, the momentum integral here evaluates the 1-loop Feynman diagram with 2n
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external ϕ legs carrying zero momenta,

=

∫

d4p

(2π)4
(−ig)n ×

(

i

p2 −m2
0 + i0

)n

(15)

where the internal propagators belong to the massive Φ field. This gives us a formula for

the ∆E in terms of Feynman diagrams.

Note that the combinatorical factors in eq. (14) are different from the Feynman rules for

scattering amplitudes. In scattering amplitudes, all the external legs are treated as distinct,

and we should add up diagrams related by non-trivial permutations of the external legs, for

example

(2n)!

2n× 2n

diagrams that look line (15). But in eq. (14) the net combinatorical factor is

1

2n× 2n
,

which corresponds to a single diagram with (2n) × 2n symmetries; in terms of the dia-

gram (15), this means treating the external legs as identical — especially since they all carry

the same momentum p = 0.

Feynman Rules for the Effective Potential

In light of the above, let me formulate the Feynman rules for the effective potentials

Veff(〈ϕ〉). Besides the usual vertices, propagators, and loops, there are also vacuum legs

(vertex) = 〈ϕ〉

Physically, the vacuum legs correspond to insertions of the scalar VEVs into the Lagrangian

and hence into the amplitudes, so the vacuum legs (also called the vacuum-insertion lines)
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belong only to the scalar species with 〈ϕ〉 6= 0. Although graphically the vacuum legs may

look like the external lines, they do not correspond to any incoming or outgoing particles, so

the momentum flowing through a vacuum leg is always zero. Combinatorically, symmetries

of a diagram may permute the vacuum legs belonging to VEVs of the same scalar field ϕ.

Also, in a vacuum-energy diagram we drop the overall momentum conservation factor

(2π)4δ(4)(pnet) since there are no non-zero external momenta.

With these Feynman rules, eq. (14) becomes simply

∆Ezero point = i
∞
∑

n=1

(16)

For the general quantum field theories — which may have multiple scalar, vector, and

fermionic fields, and several scalars may have non-zero VEVs — the effective potential also

follows from Feynman diagrams with vacuum legs (but no other kinds of external legs),

Veff(〈ϕ〉) = i
∑

all connected vacuum diagrams. (17)

Note: this sum includes diagrams with any number of loops, L = 0, 1, 2, . . ..

⋆ In theories with V0(ϕ) 6= 0, this expansion begins with tree diagrams. At the tree level,

V tree
eff (〈ϕ〉) = classical V0(ϕ). (18)

Indeed, suppose the ϕ field has a classical potential

V0(ϕ) =
m2

ϕ

2
× ϕ2 +

λϕ
24

× ϕ4, (19)
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then at the tree level

−iV tree
eff = +

=
−im2

ϕ

2
× 〈ϕ〉2 +

−iλϕ
24

× 〈ϕ〉4 ≡ −iV0(〈ϕ〉).

(20)

⋆ The one-loop vacuum diagrams such as (16) comprise the zero-point energy density E
of the fields whose propagators run around the loop, or rather the ∆E due to masses

of those fields being affected by their couplings to the VEVs. However, at this level of

approximation we ignore any interactions between the quantum fields except for their

couplings to the 〈ϕ〉.

⋆ Interactions between the quantum fields lead to Hamiltonian terms of the form

Ĥ ⊃ âââ, â†ââ, â†â†â, â†â†â†,

ââââ, â†âââ, â†â†ââ, â†â†â†â, â†â†â†â†.
(21)

These terms affect the ground state energy of the theory at second and higher orders

of the perturbation theory. In the Feynman diagram language, these higher-order

corrections correspond to the two-loop and multi-loop diagrams in the sum (17).

One Loop Calculation

Now that we have the general rules, let’s actually calculate the one-loop effective potential

for our example of a scalar field Φ whose M2 depends on the VEV of another scalar ϕ

according to eq. (5).

Instead of separately evaluating the one-loop diagrams with different numbers of vacuum

legs, it’s more convenient to add them up before integrating over the loop momentum. In

other words, let’s go back from the one-loop formula (16) to eq. (10) for the zero-point energy
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of the Φ field, thus

net
V 1 loop
eff (〈ϕ〉) = ∆E =

1

2

∫

d4pE
(2π)4

log
M2 + p2E
m2

0 + p2E
. (22)

The momentum integral here diverges quadratically, but we may reduce the divergence by

taking derivatives WRT M2. Indeed,

F (M2) =

∫

d4pE
(2π)4

log
M2 + p2E
m2

0 + p2E
diverges as Λ2,

dF

dM2
=

∫

d4pE
(2π)4

1

M2 + p2E
diverges as Λ2,

d2F

(dM2)2
=

∫

d4pE
(2π)4

−1

(M2 + p2E)
2

diverges as log Λ,

d3F

(dM2)3
=

∫

d4pE
(2π)4

2

(M2 + p2E)
3

converges.

(23)

Specifically,

d3F

(dM2)3
=

∫

d4pE
(2π)4

2

(M2 + p2E)
3

=
1

16π2

∞
∫

0

2p2E dp2E
(M2 + p2E)

3
=

1

16π2
× 1

M2
(24)

and hence

F (M2) =
M4

32π2
× log

M2

m2
0

+ A× (M4 −m2
0) + B × (M2 −m2

0) (25)

for some divergent constants A and B. Consequently,

V 1 loop
eff (〈ϕ〉) =

1

64π2
×
(

m2
0 +

g 〈ϕ〉2
2

)2

× log

(

1 +
g 〈ϕ〉2

2m2
0

)

+
a

24
×〈ϕ〉4 +

b

2
×〈ϕ〉2 . (26)

for some related constants a and b.
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To calculate these constants we go back to the Feynman diagram expansion (16) and note

that only the one-propagator and two-propagator diagrams suffer from the UV divergence.

Thus, we identify

b

2
× 〈ϕ〉2 = and

a

24
× 〈ϕ〉4 = (27)

and hence

b =
g

32π2

(

Λ2 − m2
0 log

Λ2

m2
0

+ finite

)

, a = − 3g2

32π2

(

log
Λ2

m2
0

+ finite

)

. (28)

Note that the diagrams (27) look exactly like the diagrams that renormalize the mass2 and

the self-coupling λϕ of the field ϕ, so their divergences must be canceled by the counterterms

δm(ϕ) and δλ(ϕ). The same counterterms also appear in the effective potential as

Veff ⊃ = + = δm(ϕ) ×
〈ϕ〉2
2

+ δλ(ϕ) ×
〈ϕ〉4
24

, (29)

so they cancel the divergences of the a and b. Working through the finite parts of the

counterterms (never mind the details), we finally arrive at the Coleman–Weinberg effective

potential for the two-scalar model.

Veff(〈ϕ〉) =
1

64π2
×
(

m2
0 +

g 〈ϕ〉2
2

)2

× log

(

1 +
g 〈ϕ〉2

2m2
0

)

+

(

λϕ
24

− 3g2

512π2

)

× 〈ϕ〉4 +
(

m2
ϕ

2
− gm2

0

128π2

)

× 〈ϕ〉2 .
(30)

In a general quantum field theory, the scalar VEV 〈ϕ〉 affects the masses of many particles
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of different spins, including scalars, vectors, spinors, etc. The general form of the Coleman–

Weinberg effective potentials for such theories is

V =
∑

massive

particles

(2S + 1)(−1)2S × M4(〈ϕ〉)
64π2

× log
M2(〈ϕ〉)

µ2
+

λ̃ϕ 〈ϕ〉4
24

+
m̃2

ϕ 〈ϕ〉2

2
(31)

where S is the particle’s spin and M(〈ϕ〉) is its VEV-dependent mass. Also, λ̃ϕ is the

classical self-coupling of the scalar field ϕ plus a finite O(g2) correction, and likewise for

the scalar mass m̃2
ϕ. Finally, µ is an arbitrary mass scale for measuring particles’ masses; a

redefinition of µ can be canceled by a suitable redefinition of the λ̃ϕ and m̃2
ϕ.

Coleman–Weinberg Effect

In the ground state of a quantum field theory, the vacuum expectation values 〈ϕ〉 of

scalar fields minimize the net energy density of the theory. Presumably there are no field

gradients in the vacuum states, so the net energy density is the effective potential Veff(〈ϕ〉),
including the classical potential as well as the quantum corrections from the loop diagrams.

And sometimes, the minima of this effective potential has different symmetries than what

we would expect from the classical potential.

As an example, consider a massless charged scalar field φ coupled to the EM field Aµ,

Lphys = −1
4FµνF

µν + Dµφ
∗Dµφ − λ

4
φ∗2φ2. (32)

The classical scalar potential Vcl =
λ
4 (φ

∗φ)2 has a unique minimum at φ = 0, so we expect

the U(1) gauge symmetry of the theory to remain unbroken. However, we shall see in a

moment that the Coleman–Weinberg effective potential can lead to 〈φ〉 6= 0 and hence to

Higgsing of the gauge symmetry.

To see how this works, suppose that φ somehow acquires a non-zero VEV 〈φ〉 = h/
√
2.

Consequently, the photon gets a mass Mγ = h× e, the imaginary component of the complex

scalar field becomes the longitudinal polarization of the photon, while the real part of the
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scalar field gives rise to the physical Higgs particle of mass MH = h×
√

λ/2. Plugging these

masses into the Coleman–Weinberg effective potential, we get

V (h) =
λh4

16
+ 3× e4h4

64π2
× log

(eh)2

µ2
+

(λ2/4)h4

64π2
× log

(λ/2)h2

µ2
. (33)

Now suppose λ ∼ e4 ≪ e2. In this case, Mγ ≫ MH and the dominant contribution to the

Coleman–Weinberg potential comes form the photon’s mass. Consequently,

V (h) ≈ λh4

16
+ 3× e4h4

64π2
× log

(eh)2

µ2
=

3α2

4
× h4 ×

(

log
e2h2

µ2
+

λ

12α2

)

, (34)

which we may rewrite as

V (h) ≈ 3α2

4
× h4 ×

(

log
h2

v2
− 1

2

)

(35)

for v =
µ

e
× exp

(

−1

4
− λ

24α2

)

. (36)

The pictures below show this potential as a function of complex 〈φ〉. Here is the profile

along the real-φ axis:

φ

V

Note local maximum instead of minimum at φ = 0, while the minima lie at φ = ±v/
√
2.
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In the complex φ plane, there is a whole ring of minima at

| 〈φ〉 |2 =
v2

2
> 0. (37)

Indeed, here is the 3D picture of V (φ):

We see that the Coleman–Weinberg mechanism can lead to spontaneous symmetry break-

ing in a quantum theory even when the classical potential has a symmetric minimum. More-

over, this phenomenon is not limited to the classically massless Higgs scalars but persists for

positive classical Higgs mass2 as long as this positive mass2 is small enough,

mass2 <
(

3 exp(−1
2)
)

α2v2. (38)

Optional exercise to the students: Show that in this case, the net potential (classical plus

CW) has a local minimum at 〈φ〉 = 0, but the global minima form a ring of positive radius

| 〈φ〉 | = O(v) > 0.
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