
Expansion of Free Relativistic Fields
into Creation and Annihilation Operators

All kinds of free relativistic quantum fields can be expanded into annihilation and cre-

ation operators multiplied by the plane-wave solutions. To see how this works, let’s start

with the real (hermitian) scalar field Φ̂(x). Earlier in class — cf. my notes on the Fock space

— we have expanded the Schrödinger-picture Φ̂(x) into plane waves in a box ϕ̂k and hence

into annihilation and creation operators as

Φ̂(x) =
∑
k

L−3/2eik·x

(
ϕ̂k =

âk + â†−k√
2ωk

)
(1)

where ωk = ω−k = +
√
k2 +m2 is the energy of a free relativistic particle with 3–momentum

k. In the the infinite space, eq. (1) becomes

Φ̂(x) =

∫
d3k

(2π)3
eik·x

(
âk + â†−k√

2ωk

)
non.rel

=

∫
d3k

(2π)3
eik·x

(
âk + â†−k

2ωk

)
rel

(2)

where ‘non.rel’ vs. ‘rel’ denotes non-relativistic vs. relativistic normalization of the annihi-

lation and creation operators,(
âk
)
rel

=
√

2ωk
(
âk
)
non.rel

,
(
â†k
)
rel

=
√

2ωk
(
â†k
)
non.rel

. (3)

Next, let’s separate the integral (2) into integrals over the annihilation operators and the in-

tegrals over the creation operators, and for the creation operators only change the integration

variable from k to −k. Thus,

Φ̂(x) =

∫
d3k

(2π)3
eik·x

âk
2ωk

+

∫
d3k

(2π)3
eik·x

â†−k
2ωk

=

∫
d3k

(2π)3
eik·x

âk
2ωk

+

∫
d3k

(2π)3
e−ik·x

â†k
2ω−k

=

∫
d3k

(2π)3
1

2ωk

(
e+ik·xâk + e−ik·xâ†k

)
.

(4)

Now, let’s change the QM picture from Schrödinger to Heisenberg, so all the operators
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evolve with with time. By linearity of eq. (4), we get

Φ̂(x, t) =

∫
d3k

(2π)3
1

2ωk

(
e+ik·xâk(t) + e−ik·xâ†k(t)

)
, (5)

where the time-dependence of the annihilation and creation operators follows from the

Heisenberg equations

d

dt
âk(t) = −i[âk(t), Ĥ],

d

dt
â†k(t) = −i[â†k(t), Ĥ]. (6)

In the relativistic normalization, the equal-time-bosonic commutation relations are

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0,

[
âk, â

†
k′

]
= 2ωk (2π)3δ(3)(k− k′), (7)

while the Hamiltonian for the free scalar field is

Ĥ =

∫
d3k

(2π)3
1

2ωk
ωkâ

†
kâk . (8)

Consequently, [
âk, Ĥ

]
=

1

2

∫
d3k′

(2π)3
[
âk, â

†
k′ âk′

]
(9)

where [
âk, â

†
k′ âk′

]
=
[
âk, â

†
k′

]
âk′ + 0 = 2ωk (2π)3δ(3)(k− k′)âk′ (10)

and hence [
âk, Ĥ

]
=

∫
d3k

(2π)3
ωk (2π)3δ(3)(k− k′)âk′ = ωkâk. (11)

Therefore

d

dt
âk(t) = −iωkâk(t) =⇒ âk(t) = exp(−iωkt)× âk(0), (12)

and in a similar way

d

dt
â†k(t) = +iωkâ

†
k(t) =⇒ â†k(t) = exp(+iωkt)× â†k(0). (13)

Finally, plugging these time-dependent annihilation and creation operators into eq. (5) for
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the fields, we arrive at

Φ̂(x, t) =

∫
d3k

(2π)3
1

2ωk

(
exp(+ik · x− iωkt)× âk(0) + exp(−ik · x + iωkt)× â†k(0)

)
.

(14)

It remains to rewrite this formula in a manifestly relativistic form. Note that both

exponents in eq. (14) are Lorentz-invariant

+ik · x − iωkt = −ikµxµ, −ik · x + iωkt = +ikµx
µ, (15)

provided in both cases we identify k0 = +ωk = +
√
k2 +m2. Thus, eq. (14) becomes

Φ̂(x) =

∫
d3k

(2π)3
1

2ωk

(
e−ikxâk(0) + e+ikxâ†k(0)

)k0=+ωk

. (16)

Please note that each coefficient e−ikx or e+ikx of any annihilation or creation operators here

is the plane-wave solution of the Klein–Gordon equation (∂2 + m2)φ = 0 for the free scalar

field. Moreover, all the positive-frequency solutions e−ikx accompany the annihilation oper-

ators âk while the negative-frequency plane waves e+ikx accompany the creation operators.

And both of these features apply to all kinds of free relativistic fields — real or complex,

scalar vector, or spinor, or whatever.

For example, consider the real massive vector field Aµ(x). In homework set#1 (problem

1) you saw the free-field equation for this field,

(∂2 +m2)Aµ − ∂µ∂νA
ν = 0, or equivalently

(∂2 +m2)Aµ = 0 and ∂νA
ν = 0.

(17)

The positive-frequency plane wave solutions of these equations have form

Aµ(x) = e−ikxfµ(k, λ) (18)

where k0 = +ωk while the polarization vector fµ(k, λ) obeys kµf
µ(k, λ) = 0 — and that’s

why there are 3 independent polarizations λ = −1, 0,+1 for each wave vector k. Similarly,
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the negative-frequency plane waves have form

Aµ(x) = e+ikxfµ∗(k, λ). (19)

Consequently, by analogy with eq. (16) for the scalar field, we expect to expand the quantum

massive vector field into annihilation and creation operators according to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxfµ(k, λ)× âk,λ(0) + e+ikxf∗µ(k, λ)× â†k,λ(0)

)k0=+ωk

.

(20)

Deriving this decomposition is left out from this notes as an exercise for the students —

specifically, problem 1 of the homework set#3.

Next, consider the complex scalar field Φ(x) 6= Φ∗(x) with free Lagrangian density

L = ∂µΦ∗∂µΦ − m2Φ∗Φ. (21)

The complex Φ(x) is equivalent to 2 independent real scalar fields φ1(x) and φ2(x) according

to

Φ(x) =
φ1(x) + iφ2(x)√

2
, Φ∗(x) =

φ1(x) − iφ2(x)√
2

, (22)

L =
1

2
∂µφ1∂

µφ1 −
m2

2
φ21 +

1

2
∂µφ2∂

µφ2 −
m2

2
φ22 . (23)

Quantizing the two free real scalar fields independently from each other, we get 2 separate

sets of annihilation and creation operators âk,i and â†k,i (i = 1, 2) with equal-time bosonic

commutation relations

[
any â, any â

]
= 0,

[
any â†, any â†

]
= 0,

[
âk,i, â

†
k′,j

]
= δij × (2ωk)(2π)3δ(3)(k− k′).

(24)

Physically, these operators generate the Fock space of two species of identical bosons, but

since the two species have exactly the same mass, it’s convenient to change the species basis

to eigenstates of some charge operator such as electric charge, or baryon number, or lepton
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number, or whatever. I’ll describe such charge operators in a later class or homework, but

for the moment let me simply summarize the eigenstates as the charged particle and the

anti-particle:

|particle(k)〉 =
|k, 1〉 − i |k, 2〉√

2
, |antiparticle(k)〉 =

|k, 1〉+ i |k, 2〉√
2

. (25)

In terms of creation and annihilation operators,

particle creation operator â†k =
â†k,1 − iâ

†
k,2√

2
,

antiparticle creation operator b̂†k =
â†k,1 + iâ†k,2√

2
,

particle annihilation operator âk =
âk,1 + iâk,2√

2
,

antiparticle annihilation operator b̂k =
âk,1 − iâk,2√

2
,

(26)

hence equal-time bosonic commutation relations

[
any â or any b̂ , any â or any b̂

]
=
[
any â† or any b̂† , any â† or any b̂†

]
= 0, (27)[

any b̂, any â†
]

=
[
any â, any b̂†

]
= 0, (28)[

âk, â
†
k′

]
=
[
b̂k, b̂

†
k′

]
= (2ωk)(2π)3δ(3)(k− k′). (29)

Now let’s expand the quantum fields into these creation and annihilation operators.

Similar to a single real scalar field (16), the two real components of the complex scalar

expand to

φ̂1(x) =

∫
d3k

(2π)3
1

2ωk

(
e−ikxâk,1(0) + e+ikxâ†k,1(0)

)k0=+ωk

,

φ̂2(x) =

∫
d3k

(2π)3
1

2ωk

(
e−ikxâk,2(0) + e+ikxâ†k,2(0)

)k0=+ωk

.

(30)

Consequently,

Φ̂(x) =
φ̂1(x) + iφ̂2(x)√

2
=

∫
d3k

(2π)3
1

2ωk

(
e−ikx × âk(0) + e+ikx × b̂†k(0)

)k0=+ωk

, (31)
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Φ̂†(x) =
φ̂1(x)− iφ̂2(x)√

2
=

∫
d3k

(2π)3
1

2ωk

(
e−ikx × b̂k(0) + e+ikx × â†k(0)

)k0=+ωk

. (32)

Note that the Φ̂ field comprises the particle annihilation and antiparticle creation operators,

all of which change the

net charge = net#particles − net#antiparticles (33)

by −1, while the Φ̂† field comprises the particle creation operators and the antiparticle anni-

hilation operators, all of which change the net charge by +1. Thus, we can ascribe definite

charges to the quantum fields themselves — which are hence often called the charged fields —

and if all the interaction terms in the Hamiltonian happen to be neutral, then the net charge

is conserved. Although the separate particle and antiparticle numbers are generally not con-

served in any non-free theory. For example, consider the following interaction Hamiltonian

for the charged scalar field:

Ĥint =
λ

2

∫
d3x Φ̂†Φ̂†Φ̂Φ̂. (34)

In terms of creation and annihilation operators, this interaction comprises terms of the form

Ĥint ⊃ â†â†ââ + â†b̂†âb̂ + b̂†b̂†b̂b̂

+ â†â†b̂†â + â†b̂†b̂†b̂ + â†â†b̂†b̂†

+ â†ââb̂ + b̂†âb̂b̂ + ââb̂b̂;

(35)

the terms on the last two lines here change the separate numbers of particles and antiparticles,

but they all preserve the net charge.

By comparison, for a single real field we have only one type of particle number, and

for a field interacting with itself or other fields, this particle number is not conserved. For

example,

Ĥint =
λ

24

∫
d3x Φ̂4 ⊃ â†â†â†â† + â†â†â†â + â†â†ââ + â†âââ + ââââ (36)

where most terms change the net particle number by ±2 or ±4. Consequently, the real fields

— be they scalar, vector, or whatever, — are called neutral because their quanta do not have
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any kinds of conserved charges. Such particles are called completely neutral (as opposed to

merely electrically neutral), and their antiparticles are indistinguishable from the particles

themselves. For example, the antiphoton is identical to the photon.

General Free Field

To conclude, let me generalize the above examples of expanding free quantum fields into

annihilation and creation operators to any type of a relativistic field scalar, vector, tensor,

spinor, whatever. Let’s label the components of such a field by Ψ̂ℵ(x) where ℵ stands for a

vector, tensor, or spinor index or multi-index. Then a neutral (real) field Ψ̂ℵ(x) expands to

Ψ̂ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxUℵ(k, λ) âk,λ + e+ikxVℵ(k, λ) â†k,λ

)k0=+ωk

(37)

while a charged (complex) field and its conjugate expand to

Ψ̂ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxUℵ(k, λ) âk,λ + e+ikxVℵ(k, λ) b̂†k,λ

)k0=+ωk

,

Ψ̂†ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxV ∗ℵ (k, λ) b̂k,λ + e+ikxU∗ℵ(k, λ) â†k,λ

)k0=+ωk

(38)

In all these formulae:

• The quantum fields are in the Heisenberg picture of QM =⇒ time-dependent, but the

annihilation / creation operators âk,λ, â†k,λ, etc., are in the Schrödinger picture (same

as âk,λ(t = 0), etc., in the Heisenberg picture.)

• kx ≡ kµx
µ = ωkt− k · x for ωk = +

√
k2 +m2.

• The Uℵ(k, λ) and Vℵ(k, λ) are the coefficients of the plane-wave solutions of the classical

field equations,

Ψℵ(x) = e−ikx × Uℵ(k, λ) and Ψℵ(x) = e+ikx × Vℵ(k, λ) for k0 = +ωk , (39)

where λ labels the polarizations — i.e., independent solutions for the same kµ.
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• For the bosonic fields

[
âk,λ, â

†
k′,λ′

]
=
[
b̂k,λ, b̂

†
k′,λ′

]
= δλλ′ × 2ωk(2π)3δ(3)(k− k′) (40)

while all other pairs of creation or annihilation operators commute with each other.

For the fermionic fields

{
âk,λ, â

†
k′,λ′

}
=
{
b̂k,λ, b̂

†
k′,λ′

}
= δλλ′ × 2ωk(2π)3δ(3)(k− k′) (41)

while all other pairs of creation or annihilation operators anti-commute with each other.
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