
PHY–396 K. Problem set #2. Due September 15.

1. Consider the free electromagnetic fields. For the EM fields coupled to electric currents, the

Hamiltonian formalism — and hence the canonical quantization — involves the potetials

Aµ(x), which need to be gauge fixed. Alas, the gauge redundancy does not agree with the

Hamiltonian formalism, which complicates the quantization of interacting EM fields; so in

this class I shall postpone this issue till November. However, for the free EM fields — i.e.,

not coupled to any electric charges or currents — the quantum theory can be reduced to

the quantum tension fields Ê(x, t) and B̂(x, t), and that’s what this problem is about.

In the quantum theory, the time-independent Maxwell equations are implemented as op-

eratorial identities

∇ · Ê(x, t) = ∇ · B̂(x, t) = 0 (1)

in the Hilbert space, while the time-dependent Maxwell equations follows from the Hamil-

tonian

ĤEM =

∫
d3x

(
1
2Ê

2 + 1
2B̂

2
)

(2)

and the equal-time commutation relations

[
Êi(x, t), Êj(x

′, t′ = t)
]

= 0,[
B̂i(x, t), B̂j(x

′, t′ = t)
]

= 0,[
Êi(x, t), B̂j(x

′, t′ = t)
]

= −ih̄c εijk
∂

∂xk
δ(3)(x− x′).

(3)

(a) Verify that the commutation relations (3) are consistent with the time-independent

Maxwell equations (1).

(b) Derive the time-dependent Maxwell equations from the Hamiltonian (2) and the com-

mutation relations (3).
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2. Now consider the massive relativistic vector field Aµ(x). with classical Lagrangian density

(in h̄ = c = 1 units)

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (4)

where the current Jµ(x) is a fixed source for the Aµ(x) field. Because of the mass term,

the Lagrangian (4) is not gauge invariant. However, we assume that the current Jµ(x) is

conserved, ∂µJ
µ(x) = 0.

Back in homework set#1 (problem 1) we have derived the Euler–Lagrange equations for

the massive vector field. In this problem, we develop the Hamiltonian formalism for the

Aµ(x). Our first step is to identify the canonically conjugate “momentum” fields.

(a) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not

have a canonical conjugate! Consequently,

H =

∫
d3x

(
−Ȧ(x) · E(x) − L

)
. (5)

(b) Show that in terms of the A, E, and A0 fields, and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(6)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.

Specifically, we have(
variational

derivative

)
δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂(∇A0)

∣∣∣∣
x

= 0. (7)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

≡ −
[
∂H
∂E
− ∇i

∂H
∂(∇iE)

]
(x,t)

,

∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

≡ +

[
∂H
∂A
− ∇i

∂H
∂(∇iA)

]
(x,t)

.

(8)
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(c) Write down the explicit form of all these equations.

(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler–Lagrange equations for the Aµ(x), namely

(∂µ∂µ +m2)Aν = ∂ν(∂µA
µ) + Jν (9)

and hence ∂µA
µ(x) = 0 and (∂ν∂ν +m2)Aµ = 0 when ∂µJ

µ ≡ 0, cf. homework #1.

3. Next, let’s quantize the massive vector field from the previous problem. Since classically

the −E(x) fields are canonically conjugate momenta to the A(x) fields, the corresponding

quantum fields Ê(x) and Â(x) satisfy the canonical equal-time commutation relations

[Âi(x, t), Âj(y, t)] = 0,

[Êi(x, t), Êj(y, t)] = 0,

[Âi(x, t), Êj(y, t)] = −iδijδ(3)(x− y)

(10)

(in the h̄ = c = 1 units). The currents also become quantum fields Ĵµ(x, t), but they are

composed of some kind of charged degrees of freedom independent from the vector fields

in question. Consequently, at equal times the currents Ĵµ(x, t) commute with both the

Ê(y, t) and the Â(y, t) fields.

The classical A0(x, t) field does not have a canonical conjugate and its equation of motion

does not involve time derivatives. In the quantum theory, Â0(x, t) satisfies a similar time-

independent constraint

m2Â0(x, t) = Ĵ0(x, t) − ∇ · Ê(x, t), (11)

but from the Hilbert space point of view this is an operatorial identity rather than an

equation of motion. Consequently, the commutation relations of the scalar potential field

follow from eqs. (10); in particular, at equal times the Â0(x, t) commutes with the Ê(y, t)

but does not commute with the Â(y, t).
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Finally, the Hamiltonian operator follows from the classical eq. (6), namely

Ĥ =

∫
d3x

{
1
2Ê

2 + Â0

(
Ĵ0 −∇ · Ê

)
− 1

2m
2Â2

0 + 1
2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
=

∫
d3x

{
1
2Ê

2 +
1

2m2

(
Ĵ0 −∇ · Ê

)2
+ 1

2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
(12)

where the second line follows from the first and eq. (11).

Your task is to calculate the commutators [Âi(x, t), Ĥ] and [Êi(x, t), Ĥ] and write down

the Heisenberg equations for the quantum vector fields. Make sure those equations are

similar to the Hamilton equations for the classical fields.

4. Finally, an easy exercise followed by a big reading assignment.

(a) Given the bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δα,β , (13)

calculate the commutators

[â†αâβ, â
†
γ ], [â†αâβ, âδ], [â†αâβ, â

†
γ âδ], and [â†αâ

†
β âγ âδ, â

†
µâν ]. (14)

(b) And now read my notes on second quantization of bosons, in particular how to translate

between the wave-function and the Fock-space languages for the operators. In class on

9/12 I have showed you the first part of those notes — the Fock space and its basis,

the creation and the annihilation operators and how they act in the wave-function

language, the Fock-space formulae for the net one-body and two-body operators, and

a couple of commutator theorems, — but I did not have time for any of the proofs.

So please read the notes by yourselves to see how the translation between the first-

quantized and the second-quantized formalisms really works. And by the way, the

proofs use the commutators you have just calculated in part (a).
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