
PHY–396 K. Problem set #4. Due September 29, 2020.

1. Consider once again the massive vector field Âµ(x). In the previous homework (set#3,

problem 2), you (should have) expanded the free vector field into creation and annihilation

operators multiplied by the plane-waves according to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikx × fµk,λ × âk,λ + e+ikx × f∗µk,λ × â

†
k,λ

)k0=+ωk

. (1)

The λ here labels the independent polarizations of a vector particle (for example, the

helicities λ = −1, 0,+1), while fµk,λ are the polarization vectors obeying

kµf
µ
k,λ = 0, gµνf

µ
k,λf

∗ν
k,λ′ = −δλ,λ′ . (2)

In this problem, we shall calculate the Feynman propagator for the massive vector field (1).

(a) First, a lemma: Show that any polarization vectors obeying the constraints (2) also

obey ∑
λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (3)

(b) Next, calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(4)

(c) Now consider a free scalar field (of the same mass m as the vector field) and its

Feynman propagator Gscalar
F (x− y). Show that

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y) = 〈0|TÂµ(x)Âν(y) |0〉 +

i

m2
δµ0δν0δ(4)(x− y). (5)

1

http://www.ph.utexas.edu/~vadim/Classes/2020f/hw03.pdf


To avoid the δ–function singularity in formulae like (5), the time-ordered product of the

vector fields (or rather, just of their Â0 components) is modified
?

according to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y). (6)

Consequently, the Feynman propagator for the massive vector field is defined using the

modified time-ordered product of the two fields,

GµνF (x− y)
def
= 〈0|T∗Âµ(x)Âν(y) |0〉 (7)

(d) Show that this propagator obtains as

GµνF (x− y) =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
. (8)

(e) Finally, write the classical action for the free vector field as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (9)

where Dµν is a differential operator, and show that the Feynman propagator (8) is a

Green’s function of this operator,

Dµνx GFνλ(x− y) = +iδµλδ
(4)(x− y). (10)

2. Next, a reading assignment. To help you understand the relations between the continuous

symmetries, their generators, the multiplets, and the representations of the generators and

of the finite symmetries, read about the rotational symmetry and its generators in chapter 3

of the J. J. Sakurai’s book Modern Quantum Mechanics.
†

Please focus on sections 1, 2,

3, second half of section 5 (representations of the rotation operators), and section 10; the

other sections 4, 6, 7, 8, and 9 are not relevant to the present class material.

PS: If you have already read the Sakurai’s book before but it has been a while, please read

it again.

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
† The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.

However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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3. Finally consider N interacting real scalar fields Φ1, . . . ,ΦN with an O(N) symmetric La-

grangian

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (11)

By the Noether theorem, the continuous SO(N) subgroup of the O(N) symmetry gives

rise to 1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (12)

In the quantum field theory, these currents become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) = Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t).
(13)

This problem is about the net charge operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0

ab(x, t) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
.

(14)

(a) Write down the equal-time commutation relations for the quantum Φ̂a and Π̂a fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that [
Q̂ab(t), Φ̂c(x, same t)

]
= −iδbcΦ̂a(x, t) + iδacΦ̂b(x, t),[

Q̂ab(t), Π̂c(x, same t)
]

= −iδbcΠ̂a(x, t) + iδacΠ̂b(x, t),
(15)

(c) Show that the all the Q̂ab commute with the Hamiltonian operator Ĥ. In the Heisen-

berg picture, this makes all the charge operators Q̂ab time independent.

(d) Verify that the Q̂ab obey commutation relations of the SO(N) generators,[
Q̂ab, Q̂cd

]
= −iδ[c[bQ̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (16)

Now let’s take λ→ 0 and focus on the free fields. Let’s work in the Schrödinger picture and

expand all the fields into creation and annihilation operators â†p,a and âp,a (a = 1, . . . , N).
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(e) Show that in terms of creation and annihilation operators, the charges (14) become

Q̂ab =

∫
d3p

(2π)32Ep

(
−iâ†p,aâp,b + iâ†p,bâp,a

)
. (17)

For N = 2, the SO(2) symmetry becomes the U(1) phase symmetry one complex field

Φ = (Φ1 + iΦ2)/
√

2 and its conjugate Φ∗ = (Φ1 − iΦ2)/
√

2,

Φ(x) → e−iθΦ(x), Φ∗(x) → e+iθΦ∗(x). (18)

In the Fock space, the corresponding quantum fields Φ̂(x) and Φ̂†(x) give rise to particles

and anti-particles of opposite charges; the creation and annihilation operators for such

particles and antiparticles are

âp =
âp,1 + iâp,2√

2
are particle annihilation operators,

b̂p =
âp,1 − iâp,2√

2
are antiparticle annihilation operators,

â†p =
â†p,1 − iâ

†
p,2√

2
are particle creation operators,

b̂†p =
â†p,1 + iâ†p,2√

2
are antiparticle creation operators.

(19)

(f) Show that in terms of the operators (19),

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =

∫
d3p

(2π)32Ep

(
â†pâp − b̂†pb̂p

)
. (20)

(g) In terms of Φ̂ and Φ̂†, the commutation relations (15) become

[Q̂21, Φ̂(x)] = −Φ̂(x), [Q̂21, Φ̂
†(x)] = +Φ̂†(x). (21)

Verify these commutators, then use the Hadamard Lemma

eÂB̂e−Â =
∞∑
n=1

[Â, . . . , [Â, B̂] · · ·]n times

= B + [Â, B̂] + 1
2 [Â, [Â, B̂]] + 1

6 [Â, [Â, [Â, B̂]]] + · · ·

(22)
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to show that the charge Q̂21 generates the phase symmetry (18) according to

exp(+iθQ̂21)Φ̂(x) exp(−iθQ̂21) = e−iθΦ̂(x),

exp(+iθQ̂21)Φ̂
†(x) exp(−iθQ̂21) = e+iθΦ̂†(x).

(23)

Now let’s go back to N > 2 and show that the charges Q̂ab generate the SO(N) symmetry of

the quantum fields. Any SO(N) rotation matrix R can be written as a matrix exponential

of an antisymmetric matrix, R = exp(A) for A> = −A. For this matrix A, let’s define a

unitary operator in the Fock space

Û = exp

(
− i

2

∑
ab

AabQ̂ab

)
. (24)

(h) Verify that this operator is indeed unitary for any real antisymmetric matrix A.

(i) Show that Û implements the SO(N) rotation R in the scalar field space,

ÛΦ̂a(x)Û † =
∑
b

RabΦ̂b . (25)

Hint: use the commutation relations (15) and the Hadamard lemma (22).

(j) Argue that [Q̂ab, Ĥ] = 0 and eq. (25) for the action of the Û symmetries on the quantum

fields together imply simlar transformation laws for the creation and the annihilation

operators

Û âp,aÛ
† =

∑
b

Rabâp,b and Û â†p,aÛ
† =

∑
b

Rabâ
†
p,b . (26)

(k) Finally, show that when Û acts on a multiparticle state, it rotates the species index of

each particle by R,

Û |n : (p1, a1), . . . , (pn, an)〉 =
∑

b1,...,bn

Ra1,b1 · · ·Ran,bn |n : (p1, b1), . . . , (pn, bn)〉 .

(27)

Note: for simplicity assume that all particles have different momenta, p1 6= p2, etc.,

then use part (j).
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