This homework has 4 problems. Problems 1 and 2 are about the stress-energy tensor for the EM fields: free EM fields in problem 1, and EM fields coupled to charged scalr fields in problem 2. The other two problems 3 and 4 are about non-abelian gauge theories. Altogether, it's a pretty large homework set, so start working early.

1. According to the Noether theorem, a translationally invariant system of classical fields $\phi_{a}(x)$ has a conserved stress-energy tensor

$$
\begin{equation*}
T_{\text {Noether }}^{\mu \nu}=\sum_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{\nu} \phi_{a}-g^{\mu \nu} \mathcal{L} . \tag{1}
\end{equation*}
$$

For the scalar fields, real or complex, this Noether stress-energy tensor is is properly symmetric, $T_{\text {Noether }}^{\mu \nu}=T_{\text {Noether }}^{\nu \mu}$. But for the vector, tensor, spinor, etc., fields, the Noether stress-energy tensor (1) comes out asymmetric, so to make it properly symmetric one adds a total-divergence term of the form

$$
\begin{equation*}
T^{\mu \nu}=T_{\text {Noether }}^{\mu \nu}+\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu} \tag{2}
\end{equation*}
$$

where $\mathcal{K}^{\lambda \mu \nu} \equiv-\mathcal{K}^{\mu \lambda \nu}$ is some 3-index Lorentz tensor antisymmetric in its first two indices.

To illustrate the problem, consider the free electromagnetic fields described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(A_{\mu}, \partial_{\nu} A_{\mu}\right)=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{3}
\end{equation*}
$$

where A_{μ} is a real vector field and $F_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Write down $T_{\text {Noether }}^{\mu \nu}$ for the free electromagnetic fields and show that it is neither symmetric nor gauge invariant.
(b) The properly symmetric - and also gauge invariant - stress-energy tensor for the free electromagnetism is

$$
\begin{equation*}
T_{\mathrm{EM}}^{\mu \nu}=-F^{\mu \lambda} F_{\lambda}^{\nu}+\frac{1}{4} g^{\mu \nu} F_{\kappa \lambda} F^{\kappa \lambda} \tag{4}
\end{equation*}
$$

Show that this expression indeed has form (2) for

$$
\begin{equation*}
\mathcal{K}^{\lambda \mu, \nu}=-F^{\lambda \mu} A^{\nu}=-\mathcal{K}^{\mu \lambda, \nu} . \tag{5}
\end{equation*}
$$

(c) Write down the components of the stress-energy tensor (4) in non-relativistic notations and make sure you have the familiar electromagnetic energy density, momentum density, and stress.

Next, consider the electromagnetic fields coupled to the electric current J^{μ} of some charged "matter" fields. Because of this coupling, only the net energy-momentum of the whole field system should be conserved, but not the separate $P_{\text {EM }}^{\mu}$ and $P_{\text {mat }}^{\mu}$. Consequently, we should have

$$
\begin{equation*}
\partial_{\mu} T_{\text {net }}^{\mu \nu}=0 \quad \text { for } \quad T_{\text {net }}^{\mu \nu}=T_{\mathrm{EM}}^{\mu \nu}+T_{\mathrm{mat}}^{\mu \nu} \tag{6}
\end{equation*}
$$

but generally $\partial_{\mu} T_{\mathrm{EM}}^{\mu \nu} \neq 0$ and $\partial_{\mu} T_{\text {mat }}^{\mu \nu} \neq 0$.
(d) Use Maxwell's equations to show that

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{EM}}^{\mu \nu}=-F^{\nu \lambda} J_{\lambda} \tag{7}
\end{equation*}
$$

(in $c=1$ units), and therefore any system of charged matter fields should have its stress-energy tensor related to the electric current J_{λ} according to

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{mat}}^{\mu \nu}=+F^{\nu \lambda} J_{\lambda} . \tag{8}
\end{equation*}
$$

(e) Rewrite eq. (7) in non-relativistic notations and explain its physical meaning in terms of the electromagnetic energy, momentum, work, and forces.
2. Continuing problem 1, consider the EM fields coupled to a specific model of charged matter, namely a complex scalar field $\Phi(x) \neq \Phi^{*}(x)$ of electric charge $q \neq 0$. Altogether, the net Lagrangian for the A^{μ}, Φ, and Φ^{*} fields is

$$
\begin{equation*}
\mathcal{L}_{\text {net }}=D^{\mu} \Phi^{*} D_{\mu} \Phi-m^{2} \Phi^{*} \Phi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\mu} \Phi=\left(\partial_{\mu}+i q A_{\mu}\right) \Phi \quad \text { and } \quad D_{\mu} \Phi^{*}=\left(\partial_{\mu}-i q A_{\mu}\right) \Phi^{*} \tag{10}
\end{equation*}
$$

are the covariant derivatives.
(a) Write down the equation of motion for all fields in a covariant from. Also, write down the electric current

$$
\begin{equation*}
J^{\mu} \stackrel{\text { def }}{=}-\frac{\partial \mathcal{L}}{\partial A_{\mu}} \tag{11}
\end{equation*}
$$

in a manifestly gauge-invariant form and verify its conservation, $\partial_{\mu} J^{\mu}=0$ (as long as the scalar fields satisfy their equations of motion).
(b) Write down the Noether stress-energy tensor for the whole system and show that

$$
\begin{equation*}
T_{\text {net }}^{\mu \nu} \equiv T_{\mathrm{EM}}^{\mu \nu}+T_{\text {mat }}^{\mu \nu}=T_{\text {Noether }}^{\mu \nu}+\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu} \tag{12}
\end{equation*}
$$

where $T_{\mathrm{EM}}^{\mu \nu}$ is exactly as in eq. (4) for the free EM fields, the improvement tensor $\mathcal{K}^{\lambda \mu \nu}=-\mathcal{K}^{\mu \lambda \nu}$ is also exactly as in eq. (5), and

$$
\begin{equation*}
T_{\mathrm{mat}}^{\mu \nu}=D^{\mu} \Phi^{*} D^{\nu} \Phi+D^{\nu} \Phi^{*} D^{\mu} \Phi-g^{\mu \nu}\left(D_{\lambda} \Phi^{*} D^{\lambda} \Phi-m^{2} \Phi^{*} \Phi\right) \tag{13}
\end{equation*}
$$

Note: although the improvement tensor $\mathcal{K}^{\lambda \mu \nu}$ for the EM + matter system is the same as for the free EM fields, in presence of an electric current J^{μ} its derivative $\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu}$ contains an extra $J^{\mu} A^{\nu}$ term. Pay attention to this term - it is important for obtaining the gauge-invariant stress-energy tensor (13) for the scalar field.
(c) Use the scalar fields' equations of motion and the non-commutativity of covariant derivatives

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] \Phi=i q F_{\mu \nu} \Phi, \quad\left[D_{\mu}, D_{\nu}\right] \Phi^{*}=-i q F_{\mu \nu} \Phi^{*} \tag{14}
\end{equation*}
$$

to show that

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{mat}}^{\mu \nu}=+F^{\nu \lambda} J_{\lambda} \tag{15}
\end{equation*}
$$

exactly as in eq. (8), and therefore the net stress-energy tensor (12) is conserved, $c f$. problem 1 (d).
3. In class, I have focused on the fundamental multiplet of the local $\operatorname{SU}(N)$ symmetry, i.e., a set of N fields (complex scalars or Dirac fermions) which transform as a complex N-vector,

$$
\begin{equation*}
\Psi^{\prime}(x)=U(x) \Psi(x) \quad \text { i.e. } \quad \Psi_{i}^{\prime}(x)=\sum_{j} U_{i}^{j}(x) \Psi_{j}(x), \quad i, j=1,2, \ldots, N \tag{16}
\end{equation*}
$$

where $U(x)$ is an x-dependent unitary $N \times N$ matrix, $\operatorname{det} U(x) \equiv 1$. Now consider $N^{2}-1$ real fields $\Phi^{a}(x)$ forming an adjoint multiplet: In matrix form

$$
\begin{equation*}
\Phi(x)=\sum_{a} \Phi^{a}(x) \times \frac{\lambda^{a}}{2} \tag{17}
\end{equation*}
$$

is a traceless hermitian $N \times N$ matrix which transforms under the local $S U(N)$ symmetry as

$$
\begin{equation*}
\Phi^{\prime}(x)=U(x) \Phi(x) U^{\dagger}(x) . \tag{18}
\end{equation*}
$$

Note that this transformation law preserves the $\Phi^{\dagger}=\Phi$ and the $\operatorname{tr}(\Phi)=0$ conditions. The covariant derivatives D_{μ} act on an adjoint multiplet according to

$$
\begin{equation*}
D_{\mu} \Phi(x)=\partial_{\mu} \Phi(x)+i\left[\mathcal{A}_{\mu}(x), \Phi(x)\right] \equiv \partial_{\mu} \Phi(x)+i \mathcal{A}_{\mu}(x) \Phi(x)-i \Phi(x) \mathcal{A}_{\mu}(x), \tag{19}
\end{equation*}
$$

or in components

$$
\begin{equation*}
D_{\mu} \Phi^{a}(x)=\partial_{\mu} \Phi_{a}(x)-f^{a b c} \mathcal{A}_{\mu}^{b}(x) \Phi^{c}(x) . \tag{20}
\end{equation*}
$$

(a) Verify that these derivatives are indeed covariant under finite gauge transforms.
(b) Verify the Leibniz rule for covariant derivatives of matrix products. Let $\Phi(x)$ and $\Xi(x)$ be two adjoint multiplets while $\Psi(x)$ is a fundamental multiplet and $\Psi^{\dagger}(x)$ is its hermitian conjugate (row vector of Ψ_{i}^{*}). Show that

$$
\begin{align*}
D_{\mu}(\Phi \Xi) & =\left(D_{\mu} \Phi\right) \Xi+\Phi\left(D_{\mu} \Xi\right) \\
D_{\mu}(\Phi \Psi) & =\left(D_{\mu} \Phi\right) \Psi+\Phi\left(D_{\mu} \Psi\right) \tag{21}\\
D_{\mu}\left(\Psi^{\dagger} \Xi\right) & =\left(D_{\mu} \Psi^{\dagger}\right) \Xi+\Psi^{\dagger}\left(D_{\mu} \Xi\right) .
\end{align*}
$$

(c) Show that for an adjoint multiplet $\Phi(x)$,

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] \Phi(x)=i\left[\mathcal{F}_{\mu \nu}(x), \Phi(x)\right]=i g\left[F_{\mu \nu}(x), \Phi(x)\right] \tag{22}
\end{equation*}
$$

or in components $\left[D_{\mu}, D_{\nu}\right] \Phi^{a}(x)=-g f^{a b c} F_{\mu \nu}^{b}(x) \Phi^{c}(x)$.

- In my notations A_{μ} and $F_{\mu \nu}$ are canonically normalized fields while $\mathcal{A}_{\mu}=g A_{\mu}$ and $\mathcal{F}_{\mu \nu}=g F_{\mu \nu}$ are normalized by the symmetry action.

In class, I have argued (using covariant derivatives) that the tension fields $\mathcal{F}_{\mu \nu}(x)$ themselves transform according to eq. (18). In other words, the $\mathcal{F}_{\mu \nu}^{a}(x)$ form an adjoint multiplet of the $S U(N)$ symmetry group.
(d) Verify the $\mathcal{F}_{\mu \nu}^{\prime}(x)=U(x) \mathcal{F}_{\mu \nu}(x) U^{\dagger}(x)$ transformation law directly from the definition $\mathcal{F}_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}+i\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]$ and the non-abelian gauge transform of the \mathcal{A}_{μ} fields.
(e) Verify the covariant differential identity for the non-abelian tension fields $\mathcal{F}_{\mu \nu}(x)$:

$$
\begin{equation*}
D_{\lambda} \mathcal{F}_{\mu \nu}+D_{\mu} \mathcal{F}_{\nu \lambda}+D_{\nu} \mathcal{F}_{\lambda \mu}=0 \tag{23}
\end{equation*}
$$

Note the covariant derivatives (19) in this equation.
Finally, consider the $S U(N)$ Yang-Mills theory - the non-abelian gauge theory that does not have any fields except $\mathcal{A}^{a}(x)$ and $\mathcal{F}^{a}(x)$; its Lagrangian is

$$
\begin{equation*}
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right)=\sum_{a} \frac{-1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \tag{24}
\end{equation*}
$$

(f) Show that the Euler-Lagrange field equations for the Yang-Mills theory can be written in covariant form as $D_{\mu} \mathcal{F}^{\mu \nu}=0$.

Hint: first show that for an infinitesimal variation $\delta \mathcal{A}_{\mu}(x)$ of the non-abelian gauge fields, the tension fields vary according to $\delta \mathcal{F}_{\mu \nu}(x)=D_{\mu} \delta \mathcal{A}_{\nu}(x)-D_{\nu} \delta \mathcal{A}_{\mu}(x)$.
4. Continuing the previous problem, consider an $S U(N)$ gauge theory in which $N^{2}-1$ vector fields $A_{\mu}^{a}(x)$ interact with some "matter" fields $\phi_{\alpha}(x)$,

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right)+\mathcal{L}_{\mathrm{mat}}\left(\phi, D_{\mu} \phi\right) \tag{25}
\end{equation*}
$$

For the moment, let me keep the matter fields completely generic - they can be scalars, or vectors, or spinors, or whatever, and form any kind of a multiplet of the local $S U(N)$ symmetry as long as such multiplet is complete and non-trivial. All we need to know right now is that there are well-defined covariant derivatives $D_{\mu} \phi$ that depend on the gauge fields A_{μ}^{a}, which give rise to the currents

$$
\begin{equation*}
J^{a \mu}=-\frac{\partial \mathcal{L}_{\mathrm{mat}}}{\partial A_{\mu}^{a}}=-\sum_{\phi} \frac{\partial \mathcal{L}_{\mathrm{mat}}}{\partial\left(D_{\mu} \phi\right)} \times i g \hat{T}^{a} \phi \tag{26}
\end{equation*}
$$

Collectively, these $N^{2}-1$ currents should form an adjoint multiplet $J^{\mu}=\sum_{a}\left(\frac{1}{2} \lambda^{a}\right) J^{a \mu}$ of the $S U(N)$ symmetry.
(a) Show that in this theory the equation of motion for the A_{μ}^{a} fields are $D_{\mu} F^{a \mu \nu}=J^{a \nu}$ and that consistency of these equations requires require the currents to be covariantly conserved,

$$
\begin{equation*}
D_{\mu} J^{\mu}=\partial_{\mu} J^{\mu}+i\left[\mathcal{A}_{\mu}, J^{\mu}\right]=0 \tag{27}
\end{equation*}
$$

or in components, $\partial_{\mu} J^{a \mu}-f^{a b c} \mathcal{A}_{\mu}^{b} J^{c \mu}=0$.
Note: a covariantly conserved current does not lead to a conserved charge, $(d / d t) \int d^{3} \mathbf{x} J^{a 0}(\mathbf{x}, t) \neq 0!$

Now consider a simple example of matter fields - a fundamental multiplet $\Psi(x)$ of N scalar fields $\Psi^{i}(x)$, with a Lagrangian
$\mathcal{L}_{\text {mat }}=D_{\mu} \Psi^{\dagger} D^{\mu} \Psi-m^{2} \Psi^{\dagger} \Psi-\frac{\lambda}{4}\left(\Psi^{\dagger} \Psi\right)^{2}, \quad \mathcal{L}_{\text {net }}=\mathcal{L}_{\text {mat }}-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right)$.
(b) Derive the $S U(N)$ currents $J^{a \mu}$ for this set of fields and verify that under $S U(N)$
symmetries the currents transform covariantly into each other as members of the adjoint multiplet. That is, the $N \times N$ matrix $J^{\mu}=\sum_{a}\left(\frac{1}{2} \lambda^{a}\right) J^{a \mu}$ transforms according to eq. (18).
Hint: for any complex vectors Ψ and $\Psi^{\prime}, \sum_{a}\left(\Psi^{\dagger} \lambda^{a} \Psi^{\prime}\right) \lambda^{a}=2 \Psi^{\prime} \otimes \Psi^{\dagger}-\frac{2}{N}\left(\Psi^{\dagger} \Psi^{\prime}\right) \times \mathbf{1}$.
(c) Finally, verify the covariant conservation $D_{\mu} J^{a \mu}$ of these currents when the scalar fields $\Psi^{i}(x)$ and $\Psi_{i}^{\dagger}(x)$ obey their equations of motion.

