
PHY–396 K. Problem set #5. Due October 6, 2020.

This homework has 4 problems. Problems 1 and 2 are about the stress-energy tensor

for the EM fields: free EM fields in problem 1, and EM fields coupled to charged scalr

fields in problem 2. The other two problems 3 and 4 are about non-abelian gauge

theories. Altogether, it’s a pretty large homework set, so start working early.

1. According to the Noether theorem, a translationally invariant system of classical fields

φa(x) has a conserved stress-energy tensor

TµνNoether =
∑
a

∂L
∂(∂µφa)

∂νφa − gµν L. (1)

For the scalar fields, real or complex, this Noether stress-energy tensor is is prop-

erly symmetric, TµνNoether = T νµNoether. But for the vector, tensor, spinor, etc., fields,

the Noether stress-energy tensor (1) comes out asymmetric, so to make it properly

symmetric one adds a total-divergence term of the form

Tµν = TµνNoether + ∂λKλµ ν , (2)

where Kλµ ν ≡ −Kµλ ν is some 3–index Lorentz tensor antisymmetric in its first two

indices.

To illustrate the problem, consider the free electromagnetic fields described by the

Lagrangian

L(Aµ, ∂νAµ) = −1
4 FµνF

µν (3)

where Aµ is a real vector field and Fµν
def
= ∂µAν − ∂νAµ.

(a) Write down TµνNoether for the free electromagnetic fields and show that it is neither

symmetric nor gauge invariant.
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(b) The properly symmetric — and also gauge invariant — stress-energy tensor for

the free electromagnetism is

TµνEM = −FµλF νλ + 1
4 g

µν FκλF
κλ. (4)

Show that this expression indeed has form (2) for

Kλµ,ν = −F λµAν = −Kµλ,ν . (5)

(c) Write down the components of the stress-energy tensor (4) in non-relativistic no-

tations and make sure you have the familiar electromagnetic energy density, mo-

mentum density, and stress.

Next, consider the electromagnetic fields coupled to the electric current Jµ of some

charged “matter” fields. Because of this coupling, only the net energy-momentum

of the whole field system should be conserved, but not the separate PµEM and Pµmat.

Consequently, we should have

∂µT
µν
net = 0 for Tµνnet = TµνEM + Tµνmat (6)

but generally ∂µT
µν
EM 6= 0 and ∂µT

µν
mat 6= 0.

(d) Use Maxwell’s equations to show that

∂µT
µν
EM = −F νλJλ (7)

(in c = 1 units), and therefore any system of charged matter fields should have its

stress-energy tensor related to the electric current Jλ according to

∂µT
µν
mat = +F νλJλ. (8)

(e) Rewrite eq. (7) in non-relativistic notations and explain its physical meaning in

terms of the electromagnetic energy, momentum, work, and forces.
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2. Continuing problem 1, consider the EM fields coupled to a specific model of charged

matter, namely a complex scalar field Φ(x) 6= Φ∗(x) of electric charge q 6= 0. Alto-

gether, the net Lagrangian for the Aµ, Φ, and Φ∗ fields is

Lnet = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν (9)

where

DµΦ = (∂µ + iqAµ)Φ and DµΦ∗ = (∂µ − iqAµ)Φ∗ (10)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write

down the electric current

Jµ
def
= − ∂L

∂Aµ
(11)

in a manifestly gauge-invariant form and verify its conservation, ∂µJ
µ = 0 (as long

as the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole system and show that

Tµνnet ≡ TµνEM + Tµνmat = TµνNoether + ∂λKλµν , (12)

where TµνEM is exactly as in eq. (4) for the free EM fields, the improvement tensor

Kλµ ν = −Kµλ ν is also exactly as in eq. (5), and

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
. (13)

Note: although the improvement tensor Kλµ ν for the EM + matter system is the

same as for the free EM fields, in presence of an electric current Jµ its derivative

∂λKλµ ν contains an extra JµAν term. Pay attention to this term — it is important

for obtaining the gauge-invariant stress-energy tensor (13) for the scalar field.
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(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant

derivatives

[Dµ, Dν ]Φ = iqFµνΦ, [Dµ, Dν ]Φ∗ = −iqFµνΦ∗ (14)

to show that

∂µT
µν
mat = +F νλJλ (15)

exactly as in eq. (8), and therefore the net stress-energy tensor (12) is conserved,

cf. problem 1(d).

3. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry,

i.e., a set of N fields (complex scalars or Dirac fermions) which transform as a complex

N–vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) =
∑
j

U j
i (x)Ψj(x), i, j = 1, 2, . . . , N (16)

where U(x) is an x–dependent unitary N × N matrix, detU(x) ≡ 1. Now consider

N2 − 1 real fields Φa(x) forming an adjoint multiplet: In matrix form

Φ(x) =
∑
a

Φa(x)× λa

2
(17)

is a traceless hermitian N ×N matrix which transforms under the local SU(N) sym-

metry as

Φ′(x) = U(x)Φ(x)U †(x). (18)

Note that this transformation law preserves the Φ† = Φ and the tr(Φ) = 0 conditions.

The covariant derivatives Dµ act on an adjoint multiplet according to

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x), (19)

or in components

DµΦa(x) = ∂µΦa(x) − fabcAbµ(x)Φc(x). (20)

(a) Verify that these derivatives are indeed covariant under finite gauge transforms.

4



(b) Verify the Leibniz rule for covariant derivatives of matrix products. Let Φ(x) and

Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ†(x)

is its hermitian conjugate (row vector of Ψ∗i ). Show that

Dµ(ΦΞ) = (DµΦ)Ξ + Φ(DµΞ),

Dµ(ΦΨ) = (DµΦ)Ψ + Φ(DµΨ),

Dµ(Ψ†Ξ) = (DµΨ†)Ξ + Ψ†(DµΞ).

(21)

(c) Show that for an adjoint multiplet Φ(x),

[Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)] = ig[Fµν(x),Φ(x)] (22)

or in components [Dµ, Dν ]Φa(x) = −gfabcF bµν(x)Φc(x).

• In my notations Aµ and Fµν are canonically normalized fields while Aµ = gAµ

and Fµν = gFµν are normalized by the symmetry action.

In class, I have argued (using covariant derivatives) that the tension fields Fµν(x)

themselves transform according to eq. (18). In other words, the Faµν(x) form an adjoint

multiplet of the SU(N) symmetry group.

(d) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the defi-

nition Fµν
def
= ∂µAν − ∂νAµ + i[Aµ,Aν ] and the non-abelian gauge transform of

the Aµ fields.

(e) Verify the covariant differential identity for the non-abelian tension fields Fµν(x):

DλFµν + DµFνλ + DνFλµ = 0. (23)

Note the covariant derivatives (19) in this equation.

Finally, consider the SU(N) Yang–Mills theory — the non-abelian gauge theory that

does not have any fields except Aa(x) and Fa(x); its Lagrangian is

LYM = − 1

2g2
tr
(
FµνFµν

)
=
∑
a

−1
4 F

a
µνF

aµν . (24)

(f) Show that the Euler–Lagrange field equations for the Yang–Mills theory can be

written in covariant form as DµFµν = 0.
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Hint: first show that for an infinitesimal variation δAµ(x) of the non-abelian gauge

fields, the tension fields vary according to δFµν(x) = DµδAν(x)−DνδAµ(x).

4. Continuing the previous problem, consider an SU(N) gauge theory in which N2 − 1

vector fields Aaµ(x) interact with some “matter” fields φα(x),

L = − 1

2g2
tr
(
FµνFµν

)
+ Lmat(φ,Dµφ). (25)

For the moment, let me keep the matter fields completely generic — they can be

scalars, or vectors, or spinors, or whatever, and form any kind of a multiplet of the

local SU(N) symmetry as long as such multiplet is complete and non-trivial. All we

need to know right now is that there are well-defined covariant derivatives Dµφ that

depend on the gauge fields Aaµ, which give rise to the currents

Jaµ = −∂Lmat

∂Aaµ
= −

∑
φ

∂Lmat

∂(Dµφ)
× igT̂ aφ. (26)

Collectively, these N2−1 currents should form an adjoint multiplet Jµ =
∑

a(
1
2λ

a)Jaµ

of the SU(N) symmetry.

(a) Show that in this theory the equation of motion for the Aaµ fields are DµF
aµν = Jaν

and that consistency of these equations requires require the currents to be covari-

antly conserved,

DµJ
µ = ∂µJ

µ + i[Aµ, Jµ] = 0, (27)

or in components, ∂µJ
aµ − fabcAbµJcµ = 0.

Note: a covariantly conserved current does not lead to a conserved charge,

(d/dt)
∫
d3x Ja0(x, t) 6= 0!

Now consider a simple example of matter fields — a fundamental multiplet Ψ(x) of N

scalar fields Ψi(x), with a Lagrangian

Lmat = DµΨ†DµΨ − m2Ψ†Ψ − λ

4

(
Ψ†Ψ)2, Lnet = Lmat −

1

2g2
tr
(
FµνFµν

)
.

(28)

(b) Derive the SU(N) currents Jaµ for this set of fields and verify that under SU(N)
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symmetries the currents transform covariantly into each other as members of the

adjoint multiplet. That is, the N × N matrix Jµ =
∑

a(
1
2λ

a)Jaµ transforms

according to eq. (18).

Hint: for any complex vectors Ψ and Ψ′,
∑

a(Ψ
†λaΨ′)λa = 2Ψ′⊗Ψ†− 2

N (Ψ†Ψ′)×1.

(c) Finally, verify the covariant conservation DµJ
aµ of these currents when the scalar

fields Ψi(x) and Ψ†i (x) obey their equations of motion.
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