PHY-396 K. Problem set #6. Due October 13, 2020.

. Consider the continuous Lorentz group SO (3,1) and its generators Jw = _Jvi_ In
3D terms, the six independent Jhv generators comprise the 3 components of the angular
momentum J¢ = %eijkjjk’ — which generate the rotations of space — plus 3 generators

Kt = J% — _ Ji0 of the Lorentz boosts.

(a) In 4D terms, the commutation relations of the Lorentz generators are
o8, ] = ighujor — ighn i — ighjon 4 ig jon )
Show that in 3D terms, these relations become

L) = ek, LRI < iR, R RT] < il ()

The Lorentz symmetry dictates the commutation relations of the JH with any operators

comprising a Lorentz multiplet. In particular, for any Lorentz vector VH
[V, 0] = i — i )

(b) Spell out these commutation relations in 3D terms, then use them to show that the

Lorentz boost generators K do not commute with the Hamiltonian H.

(c) Show that even in the non-relativistic limit, the Galilean boosts ' = t, x' = x + vt

and their generators K¢ do not commute with the Hamiltonian.

Note: Only the time-independent symmetries commute with the Hamiltonian. But
when the action of a symmetry is manifestly time dependent — like a Galilean boost
x' = x + vt or a Lorentz boost — the symmetry operators do not commute with the

time evolution and hence with the Hamiltonian.



2. Next, consider the little group G(p) of Lorentz symmetries preserving some momentum
4—vector p*. For the moment, allow the p* to be time-like, light-like, or even space-like —

anything goes as long as p # 0.

(a) Show that the little group G(p) is generated by the 3 components of the vector
R = p°J + pxK (4)

after a suitable component-by-component rescaling.

2 > (0. For

Suppose the momentum p# belongs to a massive particle, thus p#p, = m
simplicity, assume the particle moves in z direction with velocity g, thus p* = (E, 0,0, p)
for E = ym and p = Sym. In this case, the properly normalized generators of the little

group G(p) are the

~ 1 . R .
Fo= ZR = ) — Bk,
m
~ 1 . . R
JY = ERy = vJY + pyK?, (5)
- 1 . .
J* = — R* = J?  the helicity.
ym

(b) Show that these generators have angular-momentum-like commutators with each other,
[:ﬁ, Ji | = i€k J*k, Consequently, the little group G(p) is isomorphic to the rotation
group SO(3).

Now suppose the momentum p* belongs to a massless particle, pp, = 0. Again, assume
for simplicity that the particle moves in the z direction, thus p* = (E,0,0, E'). In this case,
we cannot normalize the generators of the little group as in eq. (5); instead, let’s normalize

them according to

“ 1 - “
I = _-R =1J + BxK, (6)

or in components,

~

= J* - KY IY=JY+K" I*=J. (7)

¢) Show that these generators obey similar commutation relations to the p*, p¥, and J*
g y



operators, namely
[jz,f"”] = +ilY, [jz,fy] = —il”, [fm,fy] = 0. (8)

Consequently, the little group G(p) is isomorphic to the ISO(2) group of rotations and

translations in the zy plane.

(d) Finally, show that for a tachyonic momentum with p*p, < 0, the properly normalized
generators of the little group have similar commutation relations to the K® , KV, and
J# operators. Consequently, the little group G (p) is isomorphic to the SOT(2,1), the

continuous Lorentz group in 2 + 1 spacetime dimensions.

. Now let’s focus on the massless particles. As explained in class, the finite unitary multiplets
of the G(p) = ISO(2) group generated by the (7) operators are singlets |A), although they
are non-trivial singlets for A # 0. Specifically, the state |\) is an eigenstate of the helicity

operator J* (for the momentum in the z direction) and are annihilated by the I7¥ operators,
JEIA) = AN, ITIA) = 0, Y[\ = 0. (9)

(a) Show that in 4D terms, the state |p, ) of a massless particle satisfies
Yeuamy TP p,A) = APy |p, X). (10)

(b) Use eq. (10) to show that continuous Lorentz transforms do not change helicities of

massless particles,

VL € SO*(3,1), D(L)|p,\) = |Lp, same \) x e Phase, (11)



4. Finally, consider various relations between the SO (3,1) Lorentz group and its double

cover Spin(3,1) = SL(2,C).

(a) Show that the components of the two 3—-vectors

Jy = 33 +4K) and J_ = 1(J - iK) = I (12)

N[—=

obey commutation relations
[Ji, 7)) = ik jk  [JL 0] = iRk but [JL 7] = 0. (13)

(b) Let M = Ma(L) and M = Mz(L) be matrices representing the same continuous
Lorentz symmetry L € SOt(3,1) in the 2 and the 2 spinor representations. Use

egs. (33) and (34) of jny notes on Lorentz representationg to show that

M =o9M*cy and M = o9M 0. (14)

Hint: prove and use 090%09 = —0.

Now consider the vector representation of the Lorentz symmetry and the equivalent bi-
spinor representation of the SL(2,C). In the matrix form, the (j; = j_ = %) bi-spinor

multiplet of SL(2,C) is a complex 2 x 2 matrix V' which transforms according to
VI = MxVxM' for MeSL2C). (15)
Let’s identify this bi-spinor with a Lorentz vector V# according to
V = Vto, = Vil + V.o, (16)
where 0, = (1,0). (Note the downstairs index of o,; for an upstairs index we have

ot = (1,—0).) The bi-spinor transform (15) defines a linear transform V'# = L}, V" of the

vector V#.


http://web2.ph.utexas.edu/~vadim/Classes/2020f/Lorentz.pdf

(c) Show that this transform is real (real V'* for real V”) and Lorentzian (preserves
VIV, =VPV,).
Hint: show that det(V) =V, V.

(d) Show that the Lorentz transform V'* = L/, V" is orthochronous.
For extra challenge, show that it is continuous, L € SO*(3,1).

(e) Verify that this SL(2,C) — SO (3,1) map respects the group law, L, (MoM;) =
L\ (Mo) L, (M),

Finally, consider the tensor representations of the Lorentz symmetry.

(f) Show that the (j4 = 1,j- = 1) representation is equivalent to a 2-index symmetric
traceless tensor, TH" =T"F g, TH = 0.

Also, show that the reducible (j4+ = 1,7 = 0) + (j+ = 0,j— = 1) representation is

equivalent to a 2-index antisymmetric tensor, F*" = —F"H,

Hint: For any kind of angular momentum — Hermitian or not, — the tensor product

of two doublets is a triplet plus a singlet, (7 = %) ®(= %) ==1®(G=0).



