1. Consider the continuous Lorentz group $S O^{+}(3,1)$ and its generators $\hat{J}^{\mu \nu}=-\hat{J}^{\nu \mu}$. In 3D terms, the six independent $\hat{J}^{\mu \nu}$ generators comprise the 3 components of the angular momentum $\hat{J}^{i}=\frac{1}{2} \epsilon^{i j k} \hat{J}^{j k}$ - which generate the rotations of space - plus 3 generators $\hat{K}^{i}=\hat{J}^{0 i}=-\hat{J}^{i 0}$ of the Lorentz boosts.
(a) In 4D terms, the commutation relations of the Lorentz generators are

$$
\begin{equation*}
\left[\hat{J}^{\alpha \beta}, \hat{J}^{\mu \nu}\right]=i g^{\beta \mu} \hat{J}^{\alpha \nu}-i g^{\alpha \mu} \hat{J}^{\beta \nu}-i g^{\beta \nu} \hat{J}^{\alpha \mu}+i g^{\alpha \nu} \hat{J}^{\beta \mu} . \tag{1}
\end{equation*}
$$

Show that in 3D terms, these relations become

$$
\begin{equation*}
\left[\hat{J}^{i}, \hat{J}^{j}\right]=i \epsilon^{i j k} \hat{J}^{k}, \quad\left[\hat{J}^{i}, \hat{K}^{j}\right]=i \epsilon^{i j k} \hat{K}^{k}, \quad\left[\hat{K}^{i}, \hat{K}^{j}\right]=-i \epsilon^{i j k} \hat{J}^{k} . \tag{2}
\end{equation*}
$$

The Lorentz symmetry dictates the commutation relations of the $\hat{J}^{\mu \nu}$ with any operators comprising a Lorentz multiplet. In particular, for any Lorentz vector \hat{V}^{μ}

$$
\begin{equation*}
\left[\hat{V}^{\lambda}, \hat{J}^{\mu \nu}\right]=i g^{\lambda \mu} \hat{V}^{\nu}-i g^{\lambda \nu} \hat{V}^{\mu} \tag{3}
\end{equation*}
$$

(b) Spell out these commutation relations in 3D terms, then use them to show that the Lorentz boost generators $\hat{\mathbf{K}}$ do not commute with the Hamiltonian \hat{H}.
(c) Show that even in the non-relativistic limit, the Galilean boosts $t^{\prime}=t, \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{v} t$ and their generators $\hat{\mathbf{K}}_{G}$ do not commute with the Hamiltonian.

Note: Only the time-independent symmetries commute with the Hamiltonian. But when the action of a symmetry is manifestly time dependent - like a Galilean boost $\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{v} t$ or a Lorentz boost - the symmetry operators do not commute with the time evolution and hence with the Hamiltonian.
2. Next, consider the little group $G(p)$ of Lorentz symmetries preserving some momentum 4 -vector p^{μ}. For the moment, allow the p^{μ} to be time-like, light-like, or even space-like anything goes as long as $p \neq 0$.
(a) Show that the little group $G(p)$ is generated by the 3 components of the vector

$$
\begin{equation*}
\hat{\mathbf{R}}=p^{0} \hat{\mathbf{J}}+\mathbf{p} \times \hat{\mathbf{K}} \tag{4}
\end{equation*}
$$

after a suitable component-by-component rescaling.
Suppose the momentum p^{μ} belongs to a massive particle, thus $p^{\mu} p_{\mu}=m^{2}>0$. For simplicity, assume the particle moves in z direction with velocity β, thus $p^{\mu}=(E, 0,0, p)$ for $E=\gamma m$ and $p=\beta \gamma m$. In this case, the properly normalized generators of the little group $G(p)$ are the

$$
\begin{align*}
\widetilde{J}^{x} & =\frac{1}{m} \hat{R}^{x}=\gamma \hat{J}^{x}-\beta \gamma \hat{K}^{y} \\
\widetilde{J}^{y} & =\frac{1}{m} \hat{R}^{y}=\gamma \hat{J}^{y}+\beta \gamma \hat{K}^{x} \tag{5}\\
\widetilde{J}^{z} & =\frac{1}{\gamma m} \hat{R}^{z}=\hat{J}^{z}, \quad \text { the helicity. }
\end{align*}
$$

(b) Show that these generators have angular-momentum-like commutators with each other, $\left[\widetilde{J}^{i}, \widetilde{J}^{j}\right]=i \epsilon^{i j k} \widetilde{J}^{k}$. Consequently, the little group $G(p)$ is isomorphic to the rotation group $S O(3)$.

Now suppose the momentum p^{μ} belongs to a massless particle, $p^{\mu} p_{\mu}=0$. Again, assume for simplicity that the particle moves in the z direction, thus $p^{\mu}=(E, 0,0, E)$. In this case, we cannot normalize the generators of the little group as in eq. (5); instead, let's normalize them according to

$$
\begin{equation*}
\hat{\mathbf{I}}=\frac{1}{E} \hat{\mathbf{R}}=\hat{\mathbf{J}}+\vec{\beta} \times \hat{\mathbf{K}} \tag{6}
\end{equation*}
$$

or in components,

$$
\begin{equation*}
\hat{I}^{x}=\hat{J}^{x}-\hat{K}^{y}, \quad \hat{I}^{y}=\hat{J}^{y}+\hat{K}^{x}, \quad \hat{I}^{z}=\hat{J}^{z} . \tag{7}
\end{equation*}
$$

(c) Show that these generators obey similar commutation relations to the \hat{p}^{x}, \hat{p}^{y}, and \hat{J}^{z}
operators, namely

$$
\begin{equation*}
\left[\hat{J}^{z}, \hat{I}^{x}\right]=+i \hat{I}^{y}, \quad\left[\hat{J}^{z}, \hat{I}^{y}\right]=-i \hat{I}^{x}, \quad\left[\hat{I}^{x}, \hat{I}^{y}\right]=0 . \tag{8}
\end{equation*}
$$

Consequently, the little group $G(p)$ is isomorphic to the ISO(2) group of rotations and translations in the $x y$ plane.
(d) Finally, show that for a tachyonic momentum with $p^{\mu} p_{\mu}<0$, the properly normalized generators of the little group have similar commutation relations to the \hat{K}^{x}, \hat{K}^{y}, and \hat{J}^{z} operators. Consequently, the little group $G(p)$ is isomorphic to the $S O^{+}(2,1)$, the continuous Lorentz group in $2+1$ spacetime dimensions.
3. Now let's focus on the massless particles. As explained in class, the finite unitary multiplets of the $G(p) \cong \operatorname{ISO}(2)$ group generated by the (7) operators are singlets $|\lambda\rangle$, although they are non-trivial singlets for $\lambda \neq 0$. Specifically, the state $|\lambda\rangle$ is an eigenstate of the helicity operator \hat{J}^{z} (for the momentum in the z direction) and are annihilated by the $\hat{I}^{x, y}$ operators,

$$
\begin{equation*}
\hat{J}^{z}|\lambda\rangle=\lambda|\lambda\rangle, \quad \hat{I}^{x}|\lambda\rangle=0, \quad \hat{I}^{y}|\lambda\rangle=0 . \tag{9}
\end{equation*}
$$

(a) Show that in 4D terms, the state $|p, \lambda\rangle$ of a massless particle satisfies

$$
\begin{equation*}
\frac{1}{2} \epsilon_{\mu \alpha \beta \gamma} \hat{J}^{\alpha \beta} \hat{P}^{\gamma}|p, \lambda\rangle=\lambda \hat{P}_{\mu}|p, \lambda\rangle . \tag{10}
\end{equation*}
$$

(b) Use eq. (10) to show that continuous Lorentz transforms do not change helicities of massless particles,

$$
\begin{equation*}
\left.\forall L \in \operatorname{SO}^{+}(3,1), \quad \widehat{\mathcal{D}}(L)|p, \lambda\rangle=\mid L p, \text { same } \lambda\right\rangle \times e^{i \text { phase }} \tag{11}
\end{equation*}
$$

4. Finally, consider various relations between the $S O^{+}(3,1)$ Lorentz group and its double cover $\operatorname{Spin}(3,1)=S L(2, \mathbf{C})$.
(a) Show that the components of the two 3-vectors

$$
\begin{equation*}
\hat{\mathbf{J}}_{+}=\frac{1}{2}(\hat{\mathbf{J}}+i \hat{\mathbf{K}}) \quad \text { and } \quad \hat{\mathbf{J}}_{-}=\frac{1}{2}(\hat{\mathbf{J}}-i \hat{\mathbf{K}})=\hat{\mathbf{J}}_{+}^{\dagger} \tag{12}
\end{equation*}
$$

obey commutation relations

$$
\begin{equation*}
\left[\hat{J}_{+}^{i}, \hat{J}_{+}^{j}\right]=i \epsilon^{i j k} \hat{J}_{+}^{k}, \quad\left[\hat{J}_{-}^{i}, \hat{J}_{-}^{j}\right]=i \epsilon^{i j k} \hat{J}_{-}^{k}, \quad \text { but } \quad\left[\hat{J}_{+}^{i}, \hat{J}_{-}^{j}\right]=0 . \tag{13}
\end{equation*}
$$

(b) Let $M=M_{\mathbf{2}}(L)$ and $\bar{M}=M_{\overline{2}}(L)$ be matrices representing the same continuous Lorentz symmetry $L \in S O^{+}(3,1)$ in the $\mathbf{2}$ and the $\overline{\mathbf{2}}$ spinor representations. Use eqs. (33) and (34) of my notes on Lorentz representations to show that

$$
\begin{equation*}
\bar{M}=\sigma_{2} M^{*} \sigma_{2} \quad \text { and } \quad M=\sigma_{2} \bar{M}^{*} \sigma_{2} . \tag{14}
\end{equation*}
$$

Hint: prove and use $\sigma_{2} \sigma^{*} \sigma_{2}=-\sigma$.
Now consider the vector representation of the Lorentz symmetry and the equivalent bispinor representation of the $S L(2, \mathbf{C})$. In the matrix form, the $\left(j_{+}=j_{-}=\frac{1}{2}\right)$ bi-spinor multiplet of $S L(2, \mathbf{C})$ is a complex 2×2 matrix V which transforms according to

$$
\begin{equation*}
V^{\prime}=M \times V \times M^{\dagger} \quad \text { for } M \in S L(2, \mathbf{C}) \tag{15}
\end{equation*}
$$

Let's identify this bi-spinor with a Lorentz vector V^{μ} according to

$$
\begin{equation*}
V=V^{\mu} \sigma_{\mu}=V^{0} \mathbf{1}_{2 \times 2}+\mathbf{V} \cdot \boldsymbol{\sigma} \tag{16}
\end{equation*}
$$

where $\sigma_{\mu}=(1, \boldsymbol{\sigma})$. (Note the downstairs index of σ_{μ}; for an upstairs index we have $\sigma^{\mu}=(1,-\sigma)$.) The bi-spinor transform (15) defines a linear transform $V^{\mu}=L_{\nu}^{\mu} V^{\nu}$ of the vector V^{μ}.
(c) Show that this transform is real (real $V^{\prime \mu}$ for real V^{ν}) and Lorentzian (preserves $\left.V^{\prime \mu} V_{\mu}=V^{\nu} V_{\nu}\right)$.
Hint: show that $\operatorname{det}(V)=V_{\mu} V^{\mu}$.
(d) Show that the Lorentz transform $V^{\mu}=L^{\mu}{ }_{\nu} V^{\nu}$ is orthochronous.

For extra challenge, show that it is continuous, $L \in S O^{+}(3,1)$.
(e) Verify that this $S L(2, \mathbf{C}) \rightarrow S O^{+}(3,1)$ map respects the group law, $L_{\nu}^{\mu}\left(M_{2} M_{1}\right)=$ $L_{\lambda}^{\mu}\left(M_{2}\right) L_{\nu}^{\lambda}\left(M_{1}\right)$.

Finally, consider the tensor representations of the Lorentz symmetry.
(f) Show that the $\left(j_{+}=1, j_{-}=1\right)$ representation is equivalent to a 2 -index symmetric traceless tensor, $T^{\mu \nu}=T^{\nu \mu}, g_{\mu \nu} T^{\mu \nu}=0$.
Also, show that the reducible $\left(j_{+}=1, j_{-}=0\right)+\left(j_{+}=0, j_{-}=1\right)$ representation is equivalent to a 2-index antisymmetric tensor, $F^{\mu \nu}=-F^{\nu \mu}$.

Hint: For any kind of angular momentum - Hermitian or not, - the tensor product of two doublets is a triplet plus a singlet, $\left(j=\frac{1}{2}\right) \otimes\left(j=\frac{1}{2}\right)=(j=1) \oplus(j=0)$.

