
PHY–396 K. Problem set #6. Due October 13, 2020.

1. Consider the continuous Lorentz group SO+(3, 1) and its generators Ĵµν = −Ĵνµ. In

3D terms, the six independent Ĵµν generators comprise the 3 components of the angular

momentum Ĵ i = 1
2ε
ijkĴjk — which generate the rotations of space — plus 3 generators

K̂i = Ĵ0i = −Ĵ i0 of the Lorentz boosts.

(a) In 4D terms, the commutation relations of the Lorentz generators are

[
Ĵαβ, Ĵµν

]
= igβµĴαν − igαµĴβν − igβν Ĵαµ + igαν Ĵβµ. (1)

Show that in 3D terms, these relations become

[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (2)

The Lorentz symmetry dictates the commutation relations of the Ĵµν with any operators

comprising a Lorentz multiplet. In particular, for any Lorentz vector V̂ µ

[
V̂ λ, Ĵµν

]
= igλµV̂ ν − igλν V̂ µ. (3)

(b) Spell out these commutation relations in 3D terms, then use them to show that the

Lorentz boost generators K̂ do not commute with the Hamiltonian Ĥ.

(c) Show that even in the non-relativistic limit, the Galilean boosts t′ = t, x′ = x + vt

and their generators K̂G do not commute with the Hamiltonian.

Note: Only the time-independent symmetries commute with the Hamiltonian. But

when the action of a symmetry is manifestly time dependent — like a Galilean boost

x′ = x + vt or a Lorentz boost — the symmetry operators do not commute with the

time evolution and hence with the Hamiltonian.
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2. Next, consider the little group G(p) of Lorentz symmetries preserving some momentum

4–vector pµ. For the moment, allow the pµ to be time-like, light-like, or even space-like —

anything goes as long as p 6= 0.

(a) Show that the little group G(p) is generated by the 3 components of the vector

R̂ = p0Ĵ + p× K̂ (4)

after a suitable component-by-component rescaling.

Suppose the momentum pµ belongs to a massive particle, thus pµpµ = m2 > 0. For

simplicity, assume the particle moves in z direction with velocity β, thus pµ = (E, 0, 0, p)

for E = γm and p = βγm. In this case, the properly normalized generators of the little

group G(p) are the

J̃x =
1

m
R̂x = γĴx − βγK̂y,

J̃y =
1

m
R̂y = γĴy + βγK̂x,

J̃z =
1

γm
R̂z = Ĵz, the helicity.

(5)

(b) Show that these generators have angular-momentum-like commutators with each other,

[J̃ i, J̃j ] = iεijkJ̃k. Consequently, the little group G(p) is isomorphic to the rotation

group SO(3).

Now suppose the momentum pµ belongs to a massless particle, pµpµ = 0. Again, assume

for simplicity that the particle moves in the z direction, thus pµ = (E, 0, 0, E). In this case,

we cannot normalize the generators of the little group as in eq. (5); instead, let’s normalize

them according to

Î =
1

E
R̂ = Ĵ + ~β × K̂, (6)

or in components,

Îx = Ĵx − K̂y, Îy = Ĵy + K̂x, Îz = Ĵz. (7)

(c) Show that these generators obey similar commutation relations to the p̂x, p̂y, and Ĵz
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operators, namely

[Ĵz, Îx] = +iÎy, [Ĵz, Îy] = −iÎx, [Îx, Îy] = 0. (8)

Consequently, the little group G(p) is isomorphic to the ISO(2) group of rotations and

translations in the xy plane.

(d) Finally, show that for a tachyonic momentum with pµpµ < 0, the properly normalized

generators of the little group have similar commutation relations to the K̂x, K̂y, and

Ĵz operators. Consequently, the little group G(p) is isomorphic to the SO+(2, 1), the

continuous Lorentz group in 2 + 1 spacetime dimensions.

3. Now let’s focus on the massless particles. As explained in class, the finite unitary multiplets

of the G(p) ∼= ISO(2) group generated by the (7) operators are singlets |λ〉, although they

are non-trivial singlets for λ 6= 0. Specifically, the state |λ〉 is an eigenstate of the helicity

operator Ĵz (for the momentum in the z direction) and are annihilated by the Îx,y operators,

Ĵz |λ〉 = λ |λ〉 , Îx |λ〉 = 0, Îy |λ〉 = 0. (9)

(a) Show that in 4D terms, the state |p, λ〉 of a massless particle satisfies

1
2εµαβγ Ĵ

αβP̂ γ |p, λ〉 = λP̂µ |p, λ〉 . (10)

(b) Use eq. (10) to show that continuous Lorentz transforms do not change helicities of

massless particles,

∀L ∈ SO+(3, 1), D̂(L) |p, λ〉 = |Lp, sameλ〉 × eiphase. (11)
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4. Finally, consider various relations between the SO+(3, 1) Lorentz group and its double

cover Spin(3, 1) = SL(2,C).

(a) Show that the components of the two 3–vectors

Ĵ+ = 1
2

(
Ĵ + iK̂

)
and Ĵ− = 1

2

(
Ĵ − iK̂

)
= Ĵ†+. (12)

obey commutation relations

[
Ĵ i+, Ĵ

j
+

]
= iεijkĴk+,

[
Ĵ i−, Ĵ

j
−
]

= iεijkĴk−, but
[
Ĵ i+, Ĵ

j
−
]

= 0. (13)

(b) Let M = M2(L) and M = M2(L) be matrices representing the same continuous

Lorentz symmetry L ∈ SO+(3, 1) in the 2 and the 2 spinor representations. Use

eqs. (33) and (34) of my notes on Lorentz representations to show that

M = σ2M
∗σ2 and M = σ2M

∗
σ2 . (14)

Hint: prove and use σ2σσ∗σ2 = −σσ.

Now consider the vector representation of the Lorentz symmetry and the equivalent bi-

spinor representation of the SL(2,C). In the matrix form, the (j+ = j− = 1
2) bi-spinor

multiplet of SL(2,C) is a complex 2× 2 matrix V which transforms according to

V ′ = M × V ×M † for M ∈ SL(2,C). (15)

Let’s identify this bi-spinor with a Lorentz vector V µ according to

V = V µ σµ = V 0 12×2 + V · σσ, (16)

where σµ = (1, σσ). (Note the downstairs index of σµ; for an upstairs index we have

σµ = (1,−σσ).) The bi-spinor transform (15) defines a linear transform V ′µ = LµνV
ν of the

vector V µ.
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(c) Show that this transform is real (real V ′µ for real V ν) and Lorentzian (preserves

V ′µVµ = V νVν).

Hint: show that det(V ) = VµV
µ.

(d) Show that the Lorentz transform V ′µ = LµνV
ν is orthochronous.

For extra challenge, show that it is continuous, L ∈ SO+(3, 1).

(e) Verify that this SL(2,C) → SO+(3, 1) map respects the group law, Lµν(M2M1) =

Lµλ(M2)L
λ
ν(M1).

Finally, consider the tensor representations of the Lorentz symmetry.

(f) Show that the (j+ = 1, j− = 1) representation is equivalent to a 2–index symmetric

traceless tensor, Tµν = T νµ, gµνT
µν = 0.

Also, show that the reducible (j+ = 1, j− = 0) + (j+ = 0, j− = 1) representation is

equivalent to a 2-index antisymmetric tensor, Fµν = −F νµ.

Hint: For any kind of angular momentum — Hermitian or not, — the tensor product

of two doublets is a triplet plus a singlet, (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).
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