1. Let's start with an exercise in Dirac matrices γ^{μ} . In this problem, you should not assume any explicit matrices for the γ^{μ} but simply use the anticommutation relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}. \tag{1}$$

When necessary, you may also assume that the Dirac matrices are 4×4 , and the γ^0 matrix is hermitian while the $\gamma^1, \gamma^2, \gamma^3$ matrices are antihermitian, $(\gamma^0)^{\dagger} = +\gamma^0$ while $(\gamma^i)^{\dagger} = -\gamma^i$ for i = 1, 2, 3.

- (a) The original Dirac equation used $\beta = \gamma^0$ and $\alpha^i = \gamma^0 \gamma^i$ (for i = 1, 2, 3) instead of the γ^{μ} . Show that eqs. (1) are equivalent to requiring all 4 matrices β and α^i to anticommute with each other and to square to 1.
- (b) Show that $\gamma^{\alpha}\gamma_{\alpha} = 4$, $\gamma^{\alpha}\gamma^{\nu}\gamma_{\alpha} = -2\gamma^{\nu}$, $\gamma^{\alpha}\gamma^{\mu}\gamma^{\nu}\gamma_{\alpha} = 4g^{\mu\nu}$, and $\gamma^{\alpha}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\gamma_{\alpha} = -2\gamma^{\nu}\gamma^{\mu}\gamma^{\lambda}$. Hint: use $\gamma^{\alpha}\gamma^{\nu} = 2g^{\nu\alpha} - \gamma^{\nu}\gamma^{\alpha}$ repeatedly.
- (c) The electron field in the EM background obeys the covariant Dirac equation $(i\gamma^{\mu}D_{\mu} m)\Psi(x) = 0$ where $D_{\mu}\Psi = \partial_{\mu}\Psi ieA_{\mu}\Psi$. Show that this equation implies

$$(D_{\mu}D^{\mu} + m^2 - eF_{\mu\nu}S^{\mu\nu})\Psi(x) = 0.$$
 (2)

Besides the 4 Dirac matrices γ^{μ} , there is another useful matrix $\gamma^{5} \stackrel{\text{def}}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.

- (d) Show that the γ^5 anticommutes with each of the γ^μ matrices $\gamma^5 \gamma^\mu = -\gamma^\mu \gamma^5$ and commutes with all the spin matrices, $\gamma^5 S^{\mu\nu} = +S^{\mu\nu} \gamma^5$.
- (e) Show that the γ^5 is hermitian and that $(\gamma^5)^2 = 1$.
- (f) Show that $\gamma^5 = (i/24)\epsilon_{\kappa\lambda\mu\nu}\gamma^{\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}$ and that $\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]} = +24i\epsilon^{\kappa\lambda\mu\nu}\gamma^5$.
- (g) Show that $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = +6i\epsilon^{\kappa\lambda\mu\nu}\gamma_{\kappa}\gamma^{5}$.
- (h) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \frac{1}{2}\gamma^{[\mu}\gamma^{\nu]} = -2iS^{\mu\nu}, \gamma^5\gamma^{\mu}$, and γ^5 .

- * My conventions here are: $\epsilon^{0123} = -1$, $\epsilon_{0123} = +1$, $\gamma^{[\mu}\gamma^{\nu]} = \gamma^{\mu}\gamma^{\nu} \gamma^{\nu}\gamma^{\mu}$, $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = \gamma^{\lambda}\gamma^{\mu}\gamma^{\nu} \gamma^{\lambda}\gamma^{\nu}\gamma^{\mu} + \gamma^{\mu}\gamma^{\nu}\gamma^{\lambda} \gamma^{\mu}\gamma^{\lambda}\gamma^{\nu} + \gamma^{\nu}\gamma^{\lambda}\gamma^{\mu} \gamma^{\nu}\gamma^{\mu}\gamma^{\lambda}$, etc.
- 2. This is an optional exercise, for extra challenge. Let's generalize the Dirac matrices to spacetime dimensions $d \neq 4$. Such matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Generalization of the γ^5 to d dimensions is $\Gamma = i^n \gamma^0 \gamma^1 \cdots \gamma^{d-1}$, where the pre-factor $i^n = \pm i$ or ± 1 is chosen such that $\Gamma = \Gamma^{\dagger}$ and $\Gamma^2 = +1$.

- (a) For even d, Γ anticommutes with all the γ^{μ} . Prove this, then use this fact to show that there are 2^d independent products of the γ^{μ} matrices, and consequently the matrices should be $2^{d/2} \times 2^{d/2}$.
- (b) For odd d, Γ commutes with all the γ^{μ} prove this. Consequently, one can set $\Gamma = +1$ or $\Gamma = -1$; the two choices lead to in-equivalent sets of the γ^{μ} .

Classify the independent products of the γ^{μ} for odd d and show that their net number is 2^{d-1} ; consequently, the matrices should be $2^{(d-1)/2} \times 2^{(d-1)/2}$.

3. Now let's go back to d=3+1 and learn about the Weyl spinors and Weyl spinor fields. Since all the spin matrices $S^{\mu\nu}$ commute with the γ^5 , for all continuous Lorentz symmetries $L^{\mu}_{\ \nu}$ their Dirac-spinor representations $M_D(L)=\exp\left(-\frac{i}{2}\Theta_{\alpha\beta}S^{\alpha\beta}\right)$ are block-diagonal in the eigenbasis of the γ^5 . This makes the Dirac spinor Ψ a reducible multiplet of the continuous Lorentz group $SO^+(3,1)$ — it comprises two different irreducible 2-component spinor multiplets, called the left-handed Weyl spinor ψ_L and the right-handed Weyl spinor ψ_R .

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix} \quad \text{where} \quad \begin{array}{c} \sigma^{\mu} \stackrel{\text{def}}{=} (\mathbf{1}_{2\times 2}, +\boldsymbol{\sigma}), \\ \overline{\sigma}^{\mu} \stackrel{\text{def}}{=} (\mathbf{1}_{2\times 2}, -\boldsymbol{\sigma}). \end{array}$$
(3)

I am sorry for the opposite convention for the σ^{μ} and $\overline{\sigma}^{\mu}$ from the previous homework, somehow I misread the Peskin & Schroeder convention.

In the Weyl convention (3), the γ^5 matrix is diagonal, specifically

$$\gamma^5 \stackrel{\text{def}}{=} i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} -1 & 0\\ 0 & +1 \end{pmatrix}. \tag{4}$$

- (a) Verify eq. (4).
- (b) Write down explicitly matrices for the $S^{\mu\nu}$ matrices in the Weyl convention and show that

$$S^{\mu\nu} = \begin{pmatrix} S_L^{\mu\nu} & 0\\ 0 & S_R^{\mu\nu} \end{pmatrix} \tag{5}$$

where $S_L^{\mu\nu}=S_{\bf 2}^{\mu\nu}$ and $S_R^{\mu\nu}=S_{\bf \bar 2}^{\mu\nu}$ are respectively the **2** and $\bf \bar 2$ representations of the Lorentz generators.

In light of eqs. (5), the Dirac spinor is a reducible $\mathbf{2} + \overline{\mathbf{2}}$ multiplet of the Spin(3, 1) Lorentz group, and for any continuous Lorentz transform L we have

$$M_D(L) = \begin{pmatrix} M_L(L) & 0 \\ 0 & M_R(L) \end{pmatrix}$$
 for $M_L(L) = M_2(L)$ and $M_R(L) = M_{\overline{2}}(L)$. (6)

In particular, for a space rotation R through angle θ around axis n,

$$M_L(R) = M_R(R) = \exp(-\frac{i}{2}\theta \mathbf{n} \cdot \boldsymbol{\sigma}),$$
 (7)

while for a Lorentz boost B of rapidity r in the direction \mathbf{n} ,

$$M_L(B) = \exp(-\frac{1}{2}r \mathbf{n} \cdot \boldsymbol{\sigma})$$
 while $M_R(B) = \exp(+\frac{1}{2}r \mathbf{n} \cdot \boldsymbol{\sigma}),$ (8)

cf. eqs. (33) and (34) of my notes on Lorentz representations.

(c) The more familiar β and γ parameters of a Lorentz boost are related to the rapidity as

$$\beta = \tanh(r), \quad \gamma = \cosh(r), \quad \beta\gamma = \sinh(r).$$
 (9)

Show that in terms of these parameters, eqs. (8) translate to

$$M_L(B) = \sqrt{\gamma} \times \sqrt{1 - \beta \mathbf{n} \cdot \boldsymbol{\sigma}}, \qquad M_R(B) = \sqrt{\gamma} \times \sqrt{1 + \beta \mathbf{n} \cdot \boldsymbol{\sigma}}.$$
 (10)

In the Weyl convention for the Dirac matrices, the Dirac spinor field $\Psi(x)$ splits into the left-handed Weyl spinor field $\psi_L(x)$ and the right-handed Weyl spinor field $\psi_R(x)$ according to

$$\Psi_{\text{Dirac}}(x) = \begin{pmatrix} \psi_L(x), \\ \psi_R(x) \end{pmatrix} \quad \text{where} \quad \begin{aligned} \psi'_L(x') &= M_L(L)\psi_L(x), \\ \psi'_R(x') &= M_R(L)\psi_R(x). \end{aligned}$$
(11)

(d) Show that the hermitian conjugate of each Weyl spinor transforms equivalently to the other spinor. Specifically, the $\sigma_2 \times \psi_L^*(x)$ transforms under continuous Lorentz symmetries like the $\psi_R(x)$, while the $\sigma_2 \times \psi_R^*(x)$ transforms like the $\psi_L(x)$.

Note: the * superscript on a multi-component quantum field means hermitian conjugation of each component field but without transposing the components, thus

$$\psi_L = \begin{pmatrix} \psi_{L1} \\ \psi_{L2} \end{pmatrix}, \quad \psi_L^* = \begin{pmatrix} \psi_{L1}^{\dagger} \\ \psi_{L2}^{\dagger} \end{pmatrix}, \quad \text{while} \quad \psi_L^{\dagger} = (\psi_{L1}^{\dagger} \quad \psi_{L2}^{\dagger}), \tag{12}$$

and likewise for the ψ_R and its conjugates.

Hint: use problem 4(b) of the previous homework#6.

Next, consider the Dirac Lagrangian $\mathcal{L} = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi$.

- (e) Express this Lagrangian in terms of the Weyl spinor fields $\psi_L(x)$ and $\psi_R(x)$ (and their conjugates $\psi_L^{\dagger}(x)$ and $\psi_R^{\dagger}(x)$).
- (f) Show that for m=0 and only for m=0 the two Weyl spinor fields become independent from each other.

- 4. Finally, consider the plane-wave solutions of the Dirac equation, $\Psi_{\alpha}(x) = u_{\alpha} \times e^{-ipx}$ and $\Psi_{\alpha}(x) = v_{\alpha} \times e^{+ipx}$ for some x-independent Dirac spinors $u_{\alpha}(p,s)$ and $v_{\alpha}(p,s)$.
 - (a) Check that these waves indeed solve the Dirac equation provided $p^2=m^2$ while

$$(\not p - m)u(p, s) = 0, \quad (\not p + m)v(p, s) = 0$$
 (13)

where p is the Dirac slash notation for the $\gamma^{\mu}p_{\mu}$. Likewise, for any Lorentz vector a^{μ} , we may write p to denote $\gamma^{\mu}a_{\mu}$.

By convention, we always take $E = p^0 = +\sqrt{\mathbf{p}^2 + m^2}$ — that's why we have both $e^{-ipx}u_{\alpha}$ and $e^{+ipx}v_{\alpha}$ types of wave — while the spinor coefficients u(p,s) and v(p,s) are normalized to

$$u^{\dagger}(p,s)u(p,s') = v^{\dagger}(p,s)v(p,s') = 2E\delta_{s,s'}.$$
 (14)

In this problem we shall write down explicit formulae for these spinors in the Weyl convention for the γ^{μ} matrices.

(b) Show that for $\mathbf{p} = 0$,

$$u(\mathbf{p} = \mathbf{0}, s) = \begin{pmatrix} \sqrt{m} \, \xi_s \\ \sqrt{m} \, \xi_s \end{pmatrix} \tag{15}$$

where ξ_s is a two-component SO(3) spinor encoding the electron's spin state. The ξ_s are normalized to $\xi_s^{\dagger} \xi_{s'} = \delta_{s,s'}$.

(c) For other momenta, $u(p, s) = M_D(\text{boost}) \times u(\mathbf{p} = 0, s)$ for the boost that turns $(m, \vec{0})$ into p^{μ} . Use eqs. (10) to show that

$$u(p,s) = \begin{pmatrix} \sqrt{E - \mathbf{p} \cdot \boldsymbol{\sigma}} \, \xi_s \\ \sqrt{E + \mathbf{p} \cdot \boldsymbol{\sigma}} \, \xi_s \end{pmatrix} = \begin{pmatrix} \sqrt{p_{\mu} \sigma^{\mu}} \, \xi_s \\ \sqrt{p_{\mu} \bar{\sigma}^{\mu}} \, \xi_s \end{pmatrix}. \tag{16}$$

(d) Use similar arguments to show that

$$v(p,s) = \begin{pmatrix} +\sqrt{E - \mathbf{p} \cdot \boldsymbol{\sigma}} \eta_s \\ -\sqrt{E + \mathbf{p} \cdot \boldsymbol{\sigma}} \eta_s \end{pmatrix} = \begin{pmatrix} +\sqrt{p_{\mu}\sigma^{\mu}} \eta_s \\ -\sqrt{p_{\mu}\bar{\sigma}^{\mu}} \eta_s \end{pmatrix}$$
(17)

where η_s are two-component SO(3) spinors normalized to $\eta_s^{\dagger} \eta_{s'} = \delta_{s,s'}$.

Physically, the η_s should have opposite spins from ξ_s — the holes in the Dirac sea have opposite spins (as well as p^{μ}) from the missing negative-energy particles. Mathematically, this requires $\eta_s^{\dagger} \mathbf{S} \eta_s = -\xi_s^{\dagger} \mathbf{S} \xi_s$; we may solve this condition by letting $\eta_s = \sigma_2 \xi_s^* = \pm i \xi_{-s}^*$.

(e) Check that $\eta_s = \sigma_2 \xi_s^* = \pm i \xi_{-s}^*$ indeed provides for the $\eta_s^{\dagger} \mathbf{S} \eta_s = -\xi_s^{\dagger} \mathbf{S} \xi_s$, then show that this leads to

$$v(p,s) = \gamma^2 u^*(p,s)$$
 and $u(p,s) = \gamma^2 v^*(p,s)$. (18)

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity $\lambda = \pm \frac{1}{2}$, the Dirac plane waves become *chiral* — *i.e.*, dominated by one of the two irreducible Weyl spinor components $\psi_L(x)$ or $\psi_R(x)$ of the Dirac spinor $\Psi(x)$, while the other component becomes negligible. Specifically,

$$u(p, -\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} \xi_L \\ 0 \end{pmatrix}, \qquad u(p, +\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} 0 \\ \xi_R \end{pmatrix},$$

$$v(p, -\frac{1}{2}) \approx -\sqrt{2E} \begin{pmatrix} 0 \\ \eta_L \end{pmatrix}, \qquad v(p, +\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} \eta_R \\ 0 \end{pmatrix}.$$

$$(19)$$

Note that for the electron waves the helicity agrees with the chirality — they are both left or both right, — but for the positron waves the chirality is opposite from the helicity.

In the last part of the previous problem, we saw that for m=0 the LH and the RH Weyl spinor fields decouple from each other. Now this exercise show us which particle modes comprise each Weyl spinor: The $\psi_L(x)$ and its hermitian conjugate $\psi_L^{\dagger}(x)$ contain the left-handed fermions and the right-handed antifermions, while the $\psi_R(x)$ and the $\psi_R^{\dagger}(x)$ contain the right-handed fermions and the left-handed antifermions.