1. Let's start with an exercise in Dirac matrices $\gamma^{\mu}$. In this problem, you should not assume any explicit matrices for the $\gamma^{\mu}$ but simply use the anticommutation relations

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{1}
\end{equation*}
$$

When necessary, you may also assume that the Dirac matrices are $4 \times 4$, and the $\gamma^{0}$ matrix is hermitian while the $\gamma^{1}, \gamma^{2}, \gamma^{3}$ matrices are antihermitian, $\left(\gamma^{0}\right)^{\dagger}=+\gamma^{0}$ while $\left(\gamma^{i}\right)^{\dagger}=-\gamma^{i}$ for $i=1,2,3$.
(a) The original Dirac equation used $\beta=\gamma^{0}$ and $\alpha^{i}=\gamma^{0} \gamma^{i}$ (for $i=1,2,3$ ) instead of the $\gamma^{\mu}$. Show that eqs. (1) are equivalent to requiring all 4 matrices $\beta$ and $\alpha^{i}$ to anticommute with each other and to square to 1 .
(b) Show that $\gamma^{\alpha} \gamma_{\alpha}=4, \gamma^{\alpha} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu}, \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 g^{\mu \nu}$, and $\gamma^{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$.
Hint: use $\gamma^{\alpha} \gamma^{\nu}=2 g^{\nu \alpha}-\gamma^{\nu} \gamma^{\alpha}$ repeatedly.
(c) The electron field in the EM background obeys the covariant Dirac equation $\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi(x)=0$ where $D_{\mu} \Psi=\partial_{\mu} \Psi-i e A_{\mu} \Psi$. Show that this equation implies

$$
\begin{equation*}
\left(D_{\mu} D^{\mu}+m^{2}-e F_{\mu \nu} S^{\mu \nu}\right) \Psi(x)=0 \tag{2}
\end{equation*}
$$

Besides the 4 Dirac matrices $\gamma^{\mu}$, there is another useful matrix $\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(d) Show that the $\gamma^{5}$ anticommutes with each of the $\gamma^{\mu}$ matrices $-\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}$ - and commutes with all the spin matrices, $\gamma^{5} S^{\mu \nu}=+S^{\mu \nu} \gamma^{5}$.
(e) Show that the $\gamma^{5}$ is hermitian and that $\left(\gamma^{5}\right)^{2}=1$.
(f) Show that $\gamma^{5}=(i / 24) \epsilon_{\kappa \lambda \mu \nu} \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}$ and that $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=+24 i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$.
(g) Show that $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=+6 i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5}$.
(h) Show that any $4 \times 4$ matrix $\Gamma$ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \frac{1}{2} \gamma^{[\mu} \gamma^{\nu]}=-2 i S^{\mu \nu}, \gamma^{5} \gamma^{\mu}$, and $\gamma^{5}$.

* My conventions here are: $\epsilon^{0123}=-1, \epsilon_{0123}=+1, \gamma^{[\mu} \gamma^{\nu]}=\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}$, $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}-\gamma^{\lambda} \gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda}-\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu}+\gamma^{\nu} \gamma^{\lambda} \gamma^{\mu}-\gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$, etc.

2. This is an optional exercise, for extra challenge. Let's generalize the Dirac matrices to spacetime dimensions $d \neq 4$. Such matrices always satisfy the Clifford algebra (1), but their sizes depend on $d$.

Generalization of the $\gamma^{5}$ to $d$ dimensions is $\Gamma=i^{n} \gamma^{0} \gamma^{1} \cdots \gamma^{d-1}$, where the pre-factor $i^{n}= \pm i$ or $\pm 1$ is chosen such that $\Gamma=\Gamma^{\dagger}$ and $\Gamma^{2}=+1$.
(a) For even $d, \Gamma$ anticommutes with all the $\gamma^{\mu}$. Prove this, then use this fact to show that there are $2^{d}$ independent products of the $\gamma^{\mu}$ matrices, and consequently the matrices should be $2^{d / 2} \times 2^{d / 2}$.
(b) For odd $d, \Gamma$ commutes with all the $\gamma^{\mu}$ - prove this. Consequently, one can set $\Gamma=+1$ or $\Gamma=-1$; the two choices lead to in-equivalent sets of the $\gamma^{\mu}$.

Classify the independent products of the $\gamma^{\mu}$ for odd $d$ and show that their net number is $2^{d-1}$; consequently, the matrices should be $2^{(d-1) / 2} \times 2^{(d-1) / 2}$.
3. Now let's go back to $d=3+1$ and learn about the Weyl spinors and Weyl spinor fields. Since all the spin matrices $S^{\mu \nu}$ commute with the $\gamma^{5}$, for all continuous Lorentz symmetries $L^{\mu}{ }_{\nu}$ their Dirac-spinor representations $M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}\right)$ are block-diagonal in the eigenbasis of the $\gamma^{5}$. This makes the Dirac spinor $\Psi$ a reducible multiplet of the continuous Lorentz group $S^{+}(3,1)$ - it comprises two different irreducible 2-component spinor multiplets, called the left-handed Weyl spinor $\psi_{L}$ and the right-handed Weyl spinor $\psi_{R}$.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu}  \tag{3}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right) \quad \text { where } \begin{aligned}
& \sigma^{\mu} \stackrel{\text { def }}{=}\left(\mathbf{1}_{2 \times 2},+\boldsymbol{\sigma}\right), \\
& \bar{\sigma}^{\mu} \stackrel{\text { def }}{=}\left(\mathbf{1}_{2 \times 2},-\boldsymbol{\sigma}\right) .
\end{aligned}
$$

I am sorry for the opposite convention for the $\sigma^{\mu}$ and $\bar{\sigma}^{\mu}$ from the previous homework, somehow I misread the Peskin \& Schroeder convention.

In the Weyl convention (3), the $\gamma^{5}$ matrix is diagonal, specifically

$$
\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
-1 & 0  \tag{4}\\
0 & +1
\end{array}\right) .
$$

(a) Verify eq. (4).
(b) Write down explicitly matrices for the $S^{\mu \nu}$ matrices in the Weyl convention and show that

$$
S^{\mu \nu}=\left(\begin{array}{cc}
S_{L}^{\mu \nu} & 0  \tag{5}\\
0 & S_{R}^{\mu \nu}
\end{array}\right)
$$

where $S_{L}^{\mu \nu}=S_{\mathbf{2}}^{\mu \nu}$ and $S_{R}^{\mu \nu}=S_{\overline{\mathbf{2}}}^{\mu \nu}$ are respectively the $\mathbf{2}$ and $\overline{\mathbf{2}}$ representations of the Lorentz generators.

In light of eqs. (5), the Dirac spinor is a reducible $\mathbf{2}+\overline{\mathbf{2}}$ multiplet of the $\operatorname{Spin}(3,1)$ Lorentz group, and for any continuous Lorentz transform $L$ we have

$$
M_{D}(L)=\left(\begin{array}{cc}
M_{L}(L) & 0  \tag{6}\\
0 & M_{R}(L)
\end{array}\right) \text { for } M_{L}(L)=M_{\mathbf{2}}(L) \text { and } M_{R}(L)=M_{\overline{\mathbf{2}}}(L)
$$

In particular, for a space rotation $R$ through angle $\theta$ around axis $\mathbf{n}$,

$$
\begin{equation*}
M_{L}(R)=M_{R}(R)=\exp \left(-\frac{i}{2} \theta \mathbf{n} \cdot \boldsymbol{\sigma}\right) \tag{7}
\end{equation*}
$$

while for a Lorentz boost $B$ of rapidity $r$ in the direction $\mathbf{n}$,

$$
\begin{equation*}
M_{L}(B)=\exp \left(-\frac{1}{2} r \mathbf{n} \cdot \boldsymbol{\sigma}\right) \quad \text { while } \quad M_{R}(B)=\exp \left(+\frac{1}{2} r \mathbf{n} \cdot \boldsymbol{\sigma}\right) \tag{8}
\end{equation*}
$$

$c f$. eqs. (33) and (34) of my notes on Lorentz representations.
(c) The more familiar $\beta$ and $\gamma$ parameters of a Lorentz boost are related to the rapidity as

$$
\begin{equation*}
\beta=\tanh (r), \quad \gamma=\cosh (r), \quad \beta \gamma=\sinh (r) \tag{9}
\end{equation*}
$$

Show that in terms of these parameters, eqs. (8) translate to

$$
\begin{equation*}
M_{L}(B)=\sqrt{\gamma} \times \sqrt{1-\beta \mathbf{n} \cdot \sigma}, \quad M_{R}(B)=\sqrt{\gamma} \times \sqrt{1+\beta \mathbf{n} \cdot \boldsymbol{\sigma}} \tag{10}
\end{equation*}
$$

In the Weyl convention for the Dirac matrices, the Dirac spinor field $\Psi(x)$ splits into the left-handed Weyl spinor field $\psi_{L}(x)$ and the right-handed Weyl spinor field $\psi_{R}(x)$ according to

$$
\Psi_{\text {Dirac }}(x)=\binom{\psi_{L}(x),}{\psi_{R}(x)} \quad \text { where } \quad \begin{align*}
& \psi_{L}^{\prime}\left(x^{\prime}\right)=M_{L}(L) \psi_{L}(x)  \tag{11}\\
& \psi_{R}^{\prime}\left(x^{\prime}\right)=M_{R}(L) \psi_{R}(x)
\end{align*}
$$

(d) Show that the hermitian conjugate of each Weyl spinor transforms equivalently to the other spinor. Specifically, the $\sigma_{2} \times \psi_{L}^{*}(x)$ transforms under continuous Lorentz symmetries like the $\psi_{R}(x)$, while the $\sigma_{2} \times \psi_{R}^{*}(x)$ transforms like the $\psi_{L}(x)$.

Note: the * superscript on a multi-component quantum field means hermitian conjugation of each component field but without transposing the components, thus

$$
\psi_{L}=\binom{\psi_{L 1}}{\psi_{L 2}}, \quad \psi_{L}^{*}=\binom{\psi_{L 1}^{\dagger}}{\psi_{L 2}^{\dagger}}, \quad \text { while } \quad \psi_{L}^{\dagger}=\left(\begin{array}{ll}
\psi_{L 1}^{\dagger} & \psi_{L 2}^{\dagger} \tag{12}
\end{array}\right)
$$

and likewise for the $\psi_{R}$ and its conjugates.
Hint: use problem 4(b) of the previous homework\#6.
Next, consider the Dirac Lagrangian $\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi$.
(e) Express this Lagrangian in terms of the Weyl spinor fields $\psi_{L}(x)$ and $\psi_{R}(x)$ (and their conjugates $\psi_{L}^{\dagger}(x)$ and $\left.\psi_{R}^{\dagger}(x)\right)$.
(f) Show that for $m=0$ - and only for $m=0$ - the two Weyl spinor fields become independent from each other.
4. Finally, consider the plane-wave solutions of the Dirac equation, $\Psi_{\alpha}(x)=u_{\alpha} \times e^{-i p x}$ and $\Psi_{\alpha}(x)=v_{\alpha} \times e^{+i p x}$ for some $x$-independent Dirac spinors $u_{\alpha}(p, s)$ and $v_{\alpha}(p, s)$.
(a) Check that these waves indeed solve the Dirac equation provided $p^{2}=m^{2}$ while

$$
\begin{equation*}
(\not p-m) u(p, s)=0, \quad(\not p+m) v(p, s)=0 \tag{13}
\end{equation*}
$$

where $\not p$ is the Dirac slash notation for the $\gamma^{\mu} p_{\mu}$. Likewise, for any Lorentz vector $a^{\mu}$, we may write $\not \subset$ to denote $\gamma^{\mu} a_{\mu}$.

By convention, we always take $E=p^{0}=+\sqrt{\mathbf{p}^{2}+m^{2}}$ - that's why we have both $e^{-i p x} u_{\alpha}$ and $e^{+i p x} v_{\alpha}$ types of wave - while the spinor coefficients $u(p, s)$ and $v(p, s)$ are normalized to

$$
\begin{equation*}
u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E \delta_{s, s^{\prime}} . \tag{14}
\end{equation*}
$$

In this problem we shall write down explicit formulae for these spinors in the Weyl convention for the $\gamma^{\mu}$ matrices.
(b) Show that for $\mathbf{p}=0$,

$$
\begin{equation*}
u(\mathbf{p}=\mathbf{0}, s)=\binom{\sqrt{m} \xi_{s}}{\sqrt{m} \xi_{s}} \tag{15}
\end{equation*}
$$

where $\xi_{s}$ is a two-component $S O(3)$ spinor encoding the electron's spin state. The $\xi_{s}$ are normalized to $\xi_{s}^{\dagger} \xi_{s^{\prime}}=\delta_{s, s^{\prime}}$.
(c) For other momenta, $u(p, s)=M_{D}$ (boost) $\times u(\mathbf{p}=0, s)$ for the boost that turns $(m, \overrightarrow{0})$ into $p^{\mu}$. Use eqs. (10) to show that

$$
\begin{equation*}
u(p, s)=\binom{\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}{\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi_{s}}{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi_{s}} . \tag{16}
\end{equation*}
$$

(d) Use similar arguments to show that

$$
\begin{equation*}
v(p, s)=\binom{+\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}{-\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}=\binom{+\sqrt{p_{\mu} \sigma^{\mu}} \eta_{s}}{-\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \eta_{s}} \tag{17}
\end{equation*}
$$

where $\eta_{s}$ are two-component $S O(3)$ spinors normalized to $\eta_{s}^{\dagger} \eta_{s^{\prime}}=\delta_{s, s^{\prime}}$.

Physically, the $\eta_{s}$ should have opposite spins from $\xi_{s}$ - the holes in the Dirac sea have opposite spins (as well as $p^{\mu}$ ) from the missing negative-energy particles. Mathematically, this requires $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$; we may solve this condition by letting $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$.
(e) Check that $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$ indeed provides for the $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$, then show that this leads to

$$
\begin{equation*}
v(p, s)=\gamma^{2} u^{*}(p, s) \quad \text { and } \quad u(p, s)=\gamma^{2} v^{*}(p, s) \tag{18}
\end{equation*}
$$

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity $\lambda= \pm \frac{1}{2}$, the Dirac plane waves become chiral - i.e., dominated by one of the two irreducible Weyl spinor components $\psi_{L}(x)$ or $\psi_{R}(x)$ of the Dirac spinor $\Psi(x)$, while the other component becomes negligible. Specifically,

$$
\begin{align*}
& u\left(p,-\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\xi_{L}}{0}, \quad u\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{0}{\xi_{R}},  \tag{19}\\
& v\left(p,-\frac{1}{2}\right) \approx-\sqrt{2 E}\binom{0}{\eta_{L}}, \quad v\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\eta_{R}}{0}
\end{align*}
$$

Note that for the electron waves the helicity agrees with the chirality - they are both left or both right, - but for the positron waves the chirality is opposite from the helicity.

In the last part of the previous problem, we saw that for $m=0$ the LH and the RH Weyl spinor fields decouple from each other. Now this exercise show us which particle modes comprise each Weyl spinor: The $\psi_{L}(x)$ and its hermitian conjugate $\psi_{L}^{\dagger}(x)$ contain the left-handed fermions and the right-handed antifermions, while the $\psi_{R}(x)$ and the $\psi_{R}^{\dagger}(x)$ contain the right-handed fermions and the left-handed antifermions.

