
PHY–396 K. Problem set #11. Due Tuesday, November 24, 2020.

1. First, a reading assignment: my notes on annihilation and Compton scattering.

(a) The first 12 pages of my notes are about electron-positron annihilation. I went over

them in class, but please re-read them carefully and pay attention to the algebra.

Make sure you understand and can follow all the calculations.

(b) The remaining 5 pages (12–17) are about the Compton scattering. I wish I could

cover them in class as well, but I ran out of time, hence this assignment. SO read the

notes and pay attention to the lab-frame kinematics as it’s quite different from the

center-of-mass frame kinematics we have used in other examples.

2. Next, consider a QED-like theory comprised of EM field Aµ(x), electron field Ψ(x), and a

real scalar field ϕ(x). The ϕ field is neutral but it has Yukawa coupling g to the electron

field Ψ(x) — which also couples to the EM field Aµ(x) according to the usual QED rules.

Altogether,
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+ gϕ×ΨΨ. (1)

The scalar particles S are much heavier than electrons or positrons, Ms ≫ me. However,

relativistic electron and positron colliding with each other at CM energy Ec.m. > Ms may

annihilate into one photon and one scalar particle, e− + e+ → γ + S.

(a) Draw tree diagrams for the e− + e+ → γ + S process and write down the tree-level

matrix element 〈γ + S|M
∣

∣e− + e+
〉

.

(b) Verify the Ward identity for the photon. Note: the Ward identity does not have to

work for individual diagrams, but it must work for the net tree amplitude.

(c) Sum |M|2 over the photon’s polarizations and average over the fermion’s spins. Show

that
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where

A11 = −1

4
Tr
(
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)

,
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)

,
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Tr
(
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)

.

(3)

Since Ms ≫ me, the initial electron and positron must be ultra-relativistic. So let’s

simplify our calculation by neglecting the electron’s mass both in the traces (3) and in the

denominators in eq. (2).

(d) Evaluate the Dirac traces (3) in the me ≈ 0 approximation and express them in terms

of the Mandelstam variables s, t, u. Show that

for me ≈ 0, A11 ≈ A22 ≈ tu, A12 ≈ (t−M2
s )(u−M2

s ). (4)

Note: because of the scalar’s mass, the kinematic relations between various momentum

products such as (kγp∓) and between the Mandelstam’s s, t, and u are different from

the e+e− → γγ annihilation.

(e) Finally, assemble the net |M|2 (in the me ≈ 0 approximation), work out the kine-

matics in the CM frame, and calculate the partial cross-section

dσ(e−e+ → γS)

dΩc.m.
.

3. Now let’s change the subject from QED (or rather QED+scalar theory) to the spontaneous

symmetry braking.

When an exact symmetry of a quantum field theory is spontaneously broken down, it gives

rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry

was only approximate to begin with, the would-be Goldstone bosons are no longer exactly

massless but only relatively light. The best-known examples of such pseudo-Goldstone

bosons are the pi-mesons π± and π0, which are indeed much lighter then other hadrons.

The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate

chiral isospin symmetry SU(2)L × SU(2)R ∼= Spin(4). This symmetry would be exact
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if the two lightest quark flavors u and d were massless; in real life, the masses mu and

md are small but non quite zero, and the symmetry is only approximate. Somehow (and

people are still arguing how), the chiral isospin symmetry is spontaneously broken down

to the ordinary isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of the broken

Spin(4)/Spin(3) give rise to 3 (pseudo) Goldstone bosons π± and π0.

As a toy model of approximate SO(N + 1) symmetry spontaneously broken down to

SO(N), consider the linear sigma model of N + 1 scalar fields φi with the Lagrangian

L =
∑

i

1

2
(∂µφi)

2 − λ

8

(

∑

i
φ2i − f2

)2

+ βλf2 × φN+1 . (5)

For β = 0 this Lagrangian has exact O(N + 1) symmetry, which would be spontaneously

broken down to O(N) by non-zero vacuum expectation values of the scalar fields. For a

non-zero β, the last term in the Lagrangian (5) explicitly breaks the O(N + 1) symmetry,

but for β ≪ f we may treat the O(N + 1) as approximate symmetry.

(a) Assume β > 0 and β ≪ f . Show that the scalar potential of the linear sigma model

has a unique minimum at

〈φ1〉 = · · · 〈φN 〉 = 0,
〈

φN+1

〉

= f + β + O(β2/f). (6)

(b) Re-express the Lagrangian (5) in terms of the shifted fields

σ(x) = φN+1(x) −
〈

φN+1

〉

, πi(x) = φi(x) for i = 1, . . . , N. (7)

and show that the πi fields are massive but much lighter than the σ field. Specifically,

M2
π ≈ λf × β while M2

σ ≈ λf(f + 3β) ≈ λf2 ≫ M2
π .

In QCD terms, N = 3, the three π1,2,3 fields (or rather the π0 = π3 and the π± =

(π1 ± iπ2)/
√
2) correspond to the three pi-mesons of rather small mass mπ ≈ 140 MeV,

and the σ corresponds to the very broad sigma resonance at about 500 MeV.

(c) Spell out the cubic and the quartic couplings of the σ and πi fields to each other and

show that

(cubic coupling)2 = (quartic coupling)×
(

M2
σ −M2

π). (8)

For β = 0 and hence M2
π = 0, these couplings are precisely as in problem 4 of homework

set#9 (eq. (3)). Therefore — as we saw in that homework — for low-energy pions with
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E ≪ Mσ, the scattering amplitudes M(πj+πk → πℓ+πm) become small as O(λE2
cm/M

2
σ)

or smaller.

For small β 6= 0 and hence small but non-zero pion mass, the coupling relation (8) is slightly

different from what we had in homework#9, so the several tree diagrams contributing to

the scattering of low-energy pions do not quite cancel each other.

(d) Recalculate the pion scattering amplitudes to allow for eq. (8) for M2
π > 0. Basically,

go over solutions to homework#9, parts 4(c–d), and correct a few formulae.

In particular, show that to the leading order in β, for s, t, u ≪ Mσ,

M(πj + πk → πℓ + πm) ≈ 1

f2

(

(s−m2
π)× δjkδℓm + (t−m2

π)× δjℓδkm

+ (u−m2
π)× δjmδkℓ

)

, (9)

which does not vanish when any of the pion’s momenta becomes small. Instead, for

slow pions with |p| ≪ mπ, this amplitude becomes

M(πj+πk → πℓ+πm) ≈
(

3δjkδℓm − δjℓδkm − δjmδkℓ
)

×
(

m2
π

f2
≈ λβ

f

)

6= 0. (10)
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