
PHY–396 L. Problem set #18. Due March 9, 2021.

1. Let’s start with the muon’s anomalous magnetic moment aµ = 1
2(gµ−2). Experimentally,

it has been measured with a very high precision and the theoretical calculations have a

similarly high precision; however, there is a very small discrepancy

aexpµ − atheoryµ ≈ (26± 8) · 10−10. (1)

This discrepancy could be due to inaccurate modeling of the photon-hadron coupling

(which affects the theoretical aµ at the two-loop level), but it may also stem from some

new particles beyond the Standard Model such as the superpartners, or an extra Higgs

scalar, or an axion, or . . . : The loop diagrams involving any such particles can affect the

muon-muon-photon vertex and hence the muon’s anomalous magnetic moment.

In this exercise, we consider the effect on the aµ of just one extra particle field the Standard

Model, namely a heavy neutral scalar field S of mass M >∼ 300 GeV with a small Yukawa

coupling g to the muon field Ψ,

L ⊃ gS ×ΨΨ. (2)

Your task is to calculate the one-loop-level effect ∆Saµ of this scalar field on the muon’s

anomalous magnetic moment.

(a) First, read carefully my notes on QED vertex correction , in particular the electron’s

anomalous magnetic moment’s calculation (pages 2–13). Make sure you understand

all the algebraic tricks I used to calculate the numerator N µ and split it into terms

contributing to the form factors F1(q
2) and F2(q

2): You will need similar tricks in

this problem.

(b) Draw a 1-loop diagram involving the Yukawa coupling (2) and contributing to the

muon-muon-vertex. Evaluate the diagram and bring it to the form

∆SΓµ = 2ig2
∫
d

(
Feynman

parameters

) ∫
red

d4`

(2π)4
N µ

[`2 −∆ + i0]power
(3)

(c) Simplify the numerator in the context of on-shell muons (but not the photon) and
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bring it to the form suitable for calculating the scalar’s contribution ∆SF1(q
2) and

the ∆SF2(q
2) to the muon’s form factors.

(d) Evaluate the momentum and the Feynman parameter integrals for the ∆Saµ =

∆SF2(q
2 = 0).

Hint: while integrating over the Feynman parameters, use M2
S � m2

muon and approx-

imate the integrand accordingly.

(e) Finally, use eq. (1) to impose an upper limit on the Yukawa coupling g for a scalar of

mass MS = 300 GeV.

2. Next, consider the δ2 counterterm in basic QED. Calculate both the infinite and the finite

parts of this counterterm at the one-loop level, then compare it to the δ1 counterterm

we have calculated in class — cf. eq. (95–96) of my notes on the dressed QED vertex

(pages 20-21). Verify that δ2 = δ1, including the finite parts of both counterterms.

The counterterms depend on the regulators (both UV and IR) and on the gauge used

for the photon propagators, so use the same regulators and same gauge as in my notes :

D = 4− 2ε < 4 dimensions to regulate the UV divergence, a tiny photon mass m2
γ � m2

e

to regulate the IR divergence, and the Feynman gauge ξ = 1.

Start by calculating the Σe
1 loop(6 p) for the off-shell electron momenta p, then take the

derivative dΣ/d 6 p, and only then take the momentum on-shell, 6 p → me. Note that Σ(6 p)
itself is infrared-finite, but its derivative has an IR singularity when the momentum goes

on-shell, and that’s why you need the IR regulator.

Note: You should get δ2 = δ1 before you take the D → 4 limit. If this does not work,

check your calculations for mistakes.

3. Finally, a reading assignment: §6.1 of the Peskin & Schroeder textbook. Read carefully

about bremmsstrahlung by scattered electrons in classical electrodynamics and in QED,

and pay particular attention to the infrared divergences of cross-sections for emitting soft

photons with ωγ → 0.

Also, skim through §6.5 about multiple soft photons, real or virtual; never mind the

techniques discussed in this section, but the results are important.
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