
PHY–396 L. Problem set #20. Due April 9, 2021.

1. Let’s start with a simple exercise on using path integrals. Consider a 1D particle living on

a circle of radius R, or equivalently a 1D particle in a box of length L = 2πR with periodic

boundary conditions where moving past the x = L point brings you back to x = 0. In

other words, the particle’s position x(t) is defined modulo L.

The particle has no potential energy, only the non-relativistic kinetic energy p2/2M .

(a) As a particle moves from some point x1 (mod L) at time t1 to some other point

x2 (mod L) at time t2, it may travel directly from x1 to x2, or it may take a few

turns around the circle before ending at the x2. Show that the space of all such paths

on a circle is isomorphic to the space of all paths on an infinite line which begin at

fixed x1 at time t1 and end at time t2 at any one of the points x′2 = x2 + nL where

n = 0,±1,±2, . . . is any whole number.

Then use path integrals to relate the evolution kernels for the circle and for the infinite

line (over the same time interval t2 − t1) as

Ucircle(x2, t2;x1, t1) =
+∞∑

n=−∞
Uline(x2 + nL, t2;x1, t1). (1)

The next question uses Poisson’s resummation formula: If a function F (n) of integer n

can be analytically continued to a function F (ν) of arbitrary real ν, then

+∞∑
n=−∞

F (n) =

∫
dν F (ν)×

+∞∑
n=−∞

δ(ν − n) =
+∞∑
`=−∞

∫
dν F (ν)× e2πi`ν . (2)

(b) The free particle living on an infinite 1D line has evolution kernel

Uline(x2, t2;x1, t1) =

√
M

2πih̄(t2 − t1)
× exp

(
+
iM(x2 − x1)2

2h̄(t1 − t1)

)
. (3)

Plug this free kernel into eq. (1) and use Poisson’s formula to sum over n.
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(c) Verify that the resulting evolution kernel for the particle one the circle agrees with

the usual QM formula

Ubox(x2, t2;x1, t1) =
∑
p

ψp(x)× exp
(
−i(p2/2M)(t2 − t1)/h̄

)
× ψ∗p(x1) (4)

where the momentum p takes circle-quantized values

p =
2πh̄

L
× integer (5)

and

ψp(x) = L−1/2 exp(ipx/h̄) (6)

is the normalized wavefunction of the momentum eigenstate |p〉.

2. Next, solve the textbook problem 11.1. In this exercise you should learn why spontaneous

breakdown of continuous symmetries does not happen in spacetimes of dimensions d ≤ 2.

Hint: for a massless free scalar field, the coordinate-space formula for the propagator

becomes fairly simple. In d Euclidean dimensions,

G0(x− y) ≡
∫

ddpE
(2π)d

eip(x−y)

p2E
=

Γ
(
d
2 − 1

)
4πd/2

× |x− y|2−d, (7)

except for d = 2 where G0(x− y) = const− 1
2π log |x− y|.

3. Finally, a modified textbook problem 9.2(c–e) about the Euclidean functional integrals

of free quantum fields at finite temperature. Questions (a–d) below concern a free scalar

field, questions (e–f) concern free fermionic fields, and question (g) is about the free

electromagnetic field.

Note: Although I talked about temperature / coupling correspondence in class, in this

exercise there are no couplings — all the fields are free — while the temperature is meant
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in the usual thermodynamical sense. That is, the fields being in thermal equilibrium with

some heat reservoir of temperature T , hence partition function

Z = Tr
(
exp(−βĤ)

)
=

∫∫∫
D[periodic Φ(xe)] exp

− β∫
0

dx4
∫
d3xLE

 . (8)

where ‘periodic’ means periodic in x4 direction with period β = 1/T , Φ(x, x4 + β) =

Φ(x, x4), and likewise for the non-scalar fields.

(a) Consider a free scalar field in 3 + 1 dimensions at finite temperature T . Use the

Euclidean functional integral (8) to calculate the partition function and hence the

Helmholtz free energy F(T ) = −T logZ. Show that formally

F(T ) =
T

2
× Tr log

(
−∂2E +m2

)
(9)

where the ∂2E operator acts on functions(x1, x2, x3, x4)E which are periodic in the

Euclidean time x4 with period β = 1/T .

(b) Write down the trace in eq. (9) as a momentum space sum/integral. Then use the

Poisson resummation formula (2) to show that

F(T ) = const +
1

2

+∞∑
`=−∞

∫
d4pE
(2π)4

exp(i`βp4)× log(p2E +m2) (10)

= F(0) +
∞∑
`=1

∫
d4pE
(2π)4

exp(i`βp4)× log(p2E +m2). (11)

(c) To evaluate the
∫
dp4 integral in eq. (11), move the integration contour from the real

axis to the two ‘banks’ of a branch cut. Show that

+∞∫
−∞

dp4
2π

exp(i`βp4)× log(p24 + E2) = −exp(−`βE)

`β
. (12)

(d) Finally, use eqs. (11) and (12) to show that the free energy of a free scalar field above
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the zero-point energy is

F(T ) − F(0) =

∫
d3p

(2π)3
T log

(
1− e−βEp

)
=

∫
d3p

(2π)3

(
Fharmonic
oscillator (T,Ep) − 1

2Ep

)
.

(13)

Next, consider a free fermion 0 + 1 dimensions, basically a two-level system in Quantum

Mechanics. In the Hamiltonian formulation this means

Ĥ = ωψ̂†ψ̂ where {ψ̂, ψ̂†} = 1 and ω = constant > 0, (14)

while in the Lagrangian formulation, ψ(t) and ψ∗(t) are Grassmann-number-valued func-

tions of the time and

LE = ψ∗ × dψ

dte
+ ω × ψ∗ψ. (15)

At finite temperature, all measurable operators must be periodic in Euclidean time with

period β, but for the fermionic fields this means that the bilinears must be periodic while

the fermionic fields themselves can be either periodic or antiperiodic, ψ(te + β) = ±ψ(te).

(e) To determine the right choice — periodic or antiperiodic, — use the functional integral

to calculate the partition function for both types of boundary conditions for the

fermionic variables in the Euclidean time, ψ(tE + β) = ±ψ(tE). Show that the

periodic condition leads to an unphysical partition function, while the antiperiodic

condition leads to the correct partition function of a two-level system.

(f) Now apply the lesson of part (e) to a Dirac fermionic field in 3 + 1 dimensions.

Calculate the partition function and hence the free energy using the Euclidean path

integral over Dirac fields which are antiperiodic in the Euclidean time, Ψ(x, x4 +β) =

−Ψ(x, x4).

Finally, consider the free electromagnetic field Aµ(x). At finite temperature, the Aµ(x)

— just like any other bosonic field — is periodic in the Euclidean time, Aµ(x, x4 + β) =

+Aµ(x, x4).
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(g) Calculate the partition function for the periodic EM field and mind the gauge-fixing

terms in the Lagrangian and the Fadde’ev–Popov determinant in the functional inte-

gral. Show that formally, the EM free energy is

F(T ) = T × Tr log
(
−∂2E

)
. (16)

(h) Recycle arguments from parts (a–d) to show that eq. (16) leads to

F(T ) − F(0) =

∫
d3p

(2π)3
2T ×

(
1− e−β|p|

)
. (17)
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