
PHY–396 L. Problem set #21. Due April 16, 2021.

1. In class we have focused on QCD and QCD-like theories of non-abelian gauge fields coupled

to Dirac fermions in some multiplet(s) of the gauge group G, cf.my notes on QCD Feynman

rules and Ward identities. This problem is about the scalar QCD, or more generally a non-

abelian gauge theory with some gauge group G and complex scalar fields Φi(x) in some

multiplet (r) of G.

(a) Write down the physical Lagrangian of this theory, the complete bare Lagrangian of

the quantum theory in the Feynman gauge, and the Feynman rules.

Now consider the annihilation process Φ + Φ∗ → 2 gauge bosons. At the tree level, there

are four Feynman diagrams contributing to this process.

(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak

form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge

bosons vanish, provided all the other gauge bosons are transversely polarized. In other

words,

M ≡ eµ1

1 eµ2

2 · · · eµn

n Mµ1µ2···µn
(momenta) = 0

when eµ1 ∝ kµ1 but eν2k2ν = · · · = eνnknν = 0.

(c) Verify this identity for the scalar annihilation amplitude: Show that IF eν2k2ν = 0

THEN k1µMµνe2ν = 0.

Similar to what we had in class for the quark-antiquark annihilations, there are non-zero

amplitudes for the scalar ‘quark’ and ‘antiquark’ annihilating into a pair of longitudinal

gluons or a ghost-antighost pair, but the crossections for these two unphysical processes

cancel each other.

(d) Take both final-state gluons to be longitudinally polarized; specifically, assume null

polarization vectors eµ1 = (1,+n1)/
√
2 for the first gluon and eν2 = (1,−n2)/

√
2 for

the second gluons.

Calculate the tree-level annihilation amplitude Φ+Φ∗ → gL+gL for these polarizations.
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(e) Next, calculate the tree amplitude for the Φ + Φ∗ → gh + gh. There is only one tree

graph for this process, so evaluating it should not be hard.

(f) Compare the two un-physical amplitudes and show that the corresponding partial

cross-sections cancel each other, thus

dσnet
dΩ

=
dσphysical

dΩ
. (1)

2. Next, an exercise in group theory you would need for QCD and QCD-like gauge theories.

Consider a generic simple non-abelian compact Lie group G and its generators T a. For a

suitable normalization of the generators,

tr(r)(T
aT b) ≡ tr

(

T a
(r)T

b
(r)

)

= R(r)δab (2)

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it does

not matter — and T a
(r) is the matrix representing the generator T a in that multiplet. The

coefficient R(r) in eq. (2) depends on the multiplet (r) but it’s the same for all generators

T a and T b. The R(r) is called the index of the multiplet (r).

The (quadratic) Casimir operator C2 =
∑

a T
aT a commutes with all the generators,

∀b, [C2, T
b] = 0. Consequently, when we restrict this operator to any irreducible mul-

tiplet (r) of the group G, it becomes a unit matrix times some number C(r). In other

words,

for an irreducible (r),
∑

a

T a
(r)T

a
(r) = C(r)× 1(r) . (3)

For example, for the isospin group SU(2), the Casimir operator is C2 = ~I2, the irreducible

multiplets have definite isospin I = 0, 12 , 1,
3
2 , 2, . . ., and C(I) = I(I + 1).

(a) Show that for any irreducible multiplet (r),

R(r)

C(r)
=

dim(r)

dim(G)
. (4)

In particular, for the SU(2) group, this formula gives R(I) = 1
3I(I + 1)(2I + 1).
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(b) Suppose the first three generators T 1, T 2, and T 3 of G generate an SU(2) subgroup,

thus

[T 1, T 2] = iT 3, [T 2, T 3] = iT 1, [T 3, T 1] = iT 2. (5)

Show that if a multiplet (r) of G decomposes into several SU(2) multiplets of isospins

I1, I2, . . . , In, then

R(r) =

n
∑

i=1

1
3Ii(Ii + 1)(2Ii + 1). (6)

(c) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

only on the first two components of a complex N -vector. This complex N -vector is

called the fundamental multiplet (of the SU(N)) and denoted (N) or N. As far as the

SU(2) subgroup is concerned, (N) comprises one doublet and N − 2 singlets, hence

R(N) =
1

2
and C(N) =

N2 − 1

2N
. (7)

Show that the adjoint multiplet of the SU(N) decomposes into one SU(2) triplet,

2(N − 2) doublets, and (N − 2)2 singlets, therefore

R(adj) = C(adj) ≡ C(G) = N. (8)

Hint: (N)× (N) = (adj) + (1).

(d) The symmetric and the anti-symmetric 2–index tensors form irreducible multiplets of

the SU(N) group. Find out the decomposition of these multiplets under the SU(2) ⊂
SU(N) and calculate their respective indices R and Casimirs C.

3. Now let’s apply this group theory to physics. Consider quark-antiquark pair production in

QCD, specifically uū → dd̄. There is only one tree diagram contributing to this process,

u ū

d d̄

(9)

Evaluate this diagram, then sum/average the |M|2 over both spins and colors of the fi-

nal/initial particles to calculate the total cross section. For simplicity, you may neglect the
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quark masses.

Note that the diagram (9) looks exactly like the QED pair production process e−e+ →
virtual γ → µ−µ+, so you can re-use the QED formula for summing/averaging over the

spins, cf. my notes on Dirac traceology from the Fall semester, pages 10–13. But in QCD,

you should also sum/average over the colors of all the quarks, and that’s the whole point

of this exercise.
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