1. In class we have focused on QCD and QCD-like theories of non-abelian gauge fields coupled to Dirac fermions in some multiplet(s) of the gauge group G, $c f$. my notes on QCD Feynman rules and Ward identities. This problem is about the scalar QCD, or more generally a nonabelian gauge theory with some gauge group G and complex scalar fields $\Phi^{i}(x)$ in some multiplet (r) of G.
(a) Write down the physical Lagrangian of this theory, the complete bare Lagrangian of the quantum theory in the Feynman gauge, and the Feynman rules.

Now consider the annihilation process $\Phi+\Phi^{*} \rightarrow 2$ gauge bosons. At the tree level, there are four Feynman diagrams contributing to this process.
(b) Draw the diagrams and write down the tree-level annihilation amplitude.

As discussed in class, amplitudes involving the non-abelian gauge fields satisfy a weak form of the Ward identity: On-shell Amplitudes involving a longitudinally polarized gauge bosons vanish, provided all the other gauge bosons are transversely polarized. In other words,

$$
\begin{gathered}
\mathcal{M} \equiv e_{1}^{\mu_{1}} e_{2}^{\mu_{2}} \cdots e_{n}^{\mu_{n}} \mathcal{M}_{\mu_{1} \mu_{2} \cdots \mu_{n}}(\text { momenta })=0 \\
\text { when } e_{1}^{\mu} \propto k_{1}^{\mu} \quad \text { but } \quad e_{2}^{\nu} k_{2 \nu}=\cdots=e_{n}^{\nu} k_{n \nu}=0
\end{gathered}
$$

(c) Verify this identity for the scalar annihilation amplitude: Show that IF $e_{2}^{\nu} k_{2 \nu}=0$ THEN $k_{1 \mu} \mathcal{M}^{\mu \nu} e_{2 \nu}=0$.

Similar to what we had in class for the quark-antiquark annihilations, there are non-zero amplitudes for the scalar 'quark' and 'antiquark' annihilating into a pair of longitudinal gluons or a ghost-antighost pair, but the crossections for these two unphysical processes cancel each other.
(d) Take both final-state gluons to be longitudinally polarized; specifically, assume null polarization vectors $e_{1}^{\mu}=\left(1,+\mathbf{n}_{1}\right) / \sqrt{2}$ for the first gluon and $e_{2}^{\nu}=\left(1,-\mathbf{n}_{2}\right) / \sqrt{2}$ for the second gluons.
Calculate the tree-level annihilation amplitude $\Phi+\Phi^{*} \rightarrow g_{L}+g_{L}$ for these polarizations.
(e) Next, calculate the tree amplitude for the $\Phi+\Phi^{*} \rightarrow \mathrm{gh}+\overline{\mathrm{gh}}$. There is only one tree graph for this process, so evaluating it should not be hard.
(f) Compare the two un-physical amplitudes and show that the corresponding partial cross-sections cancel each other, thus

$$
\begin{equation*}
\frac{d \sigma_{\text {net }}}{d \Omega}=\frac{d \sigma_{\text {physical }}}{d \Omega} \tag{1}
\end{equation*}
$$

2. Next, an exercise in group theory you would need for QCD and QCD-like gauge theories. Consider a generic simple non-abelian compact Lie group G and its generators T^{a}. For a suitable normalization of the generators,

$$
\begin{equation*}
\operatorname{tr}_{(r)}\left(T^{a} T^{b}\right) \equiv \operatorname{tr}\left(T_{(r)}^{a} T_{(r)}^{b}\right)=R(r) \delta^{a b} \tag{2}
\end{equation*}
$$

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it does not matter - and $T_{(r)}^{a}$ is the matrix representing the generator T^{a} in that multiplet. The coefficient $R(r)$ in eq. (2) depends on the multiplet (r) but it's the same for all generators T^{a} and T^{b}. The $R(r)$ is called the index of the multiplet (r).

The (quadratic) Casimir operator $C_{2}=\sum_{a} T^{a} T^{a}$ commutes with all the generators, $\forall b,\left[C_{2}, T^{b}\right]=0$. Consequently, when we restrict this operator to any irreducible multiplet (r) of the group G, it becomes a unit matrix times some number $C(r)$. In other words,

$$
\begin{equation*}
\text { for an irreducible }(r), \quad \sum_{a} T_{(r)}^{a} T_{(r)}^{a}=C(r) \times \mathbf{1}_{(r)} . \tag{3}
\end{equation*}
$$

For example, for the isospin group $S U(2)$, the Casimir operator is $C_{2}=\vec{I}^{2}$, the irreducible multiplets have definite isospin $I=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$, and $C(I)=I(I+1)$.
(a) Show that for any irreducible multiplet (r),

$$
\begin{equation*}
\frac{R(r)}{C(r)}=\frac{\operatorname{dim}(r)}{\operatorname{dim}(G)} \tag{4}
\end{equation*}
$$

In particular, for the $S U(2)$ group, this formula gives $R(I)=\frac{1}{3} I(I+1)(2 I+1)$.
(b) Suppose the first three generators T^{1}, T^{2}, and T^{3} of G generate an $S U(2)$ subgroup, thus

$$
\begin{equation*}
\left[T^{1}, T^{2}\right]=i T^{3}, \quad\left[T^{2}, T^{3}\right]=i T^{1}, \quad\left[T^{3}, T^{1}\right]=i T^{2} \tag{5}
\end{equation*}
$$

Show that if a multiplet (r) of G decomposes into several $S U(2)$ multiplets of isospins $I_{1}, I_{2}, \ldots, I_{n}$, then

$$
\begin{equation*}
R(r)=\sum_{i=1}^{n} \frac{1}{3} I_{i}\left(I_{i}+1\right)\left(2 I_{i}+1\right) . \tag{6}
\end{equation*}
$$

(c) Now consider the $S U(N)$ group with an obvious $S U(2)$ subgroup of matrices acting only on the first two components of a complex N-vector. This complex N-vector is called the fundamental multiplet (of the $S U(N)$) and denoted (N) or \mathbf{N}. As far as the $S U(2)$ subgroup is concerned, (N) comprises one doublet and $N-2$ singlets, hence

$$
\begin{equation*}
R(N)=\frac{1}{2} \quad \text { and } \quad C(N)=\frac{N^{2}-1}{2 N} \tag{7}
\end{equation*}
$$

Show that the adjoint multiplet of the $S U(N)$ decomposes into one $S U(2)$ triplet, $2(N-2)$ doublets, and $(N-2)^{2}$ singlets, therefore

$$
\begin{equation*}
R(\mathrm{adj})=C(\operatorname{adj}) \equiv C(G)=N \tag{8}
\end{equation*}
$$

Hint: $(N) \times(\bar{N})=(\operatorname{adj})+(1)$.
(d) The symmetric and the anti-symmetric 2-index tensors form irreducible multiplets of the $S U(N)$ group. Find out the decomposition of these multiplets under the $S U(2) \subset$ $S U(N)$ and calculate their respective indices R and Casimirs C.
3. Now let's apply this group theory to physics. Consider quark-antiquark pair production in QCD, specifically $u \bar{u} \rightarrow d \bar{d}$. There is only one tree diagram contributing to this process,

Evaluate this diagram, then sum/average the $|\mathcal{M}|^{2}$ over both spins and colors of the final/initial particles to calculate the total cross section. For simplicity, you may neglect the
quark masses.
Note that the diagram (9) looks exactly like the QED pair production process $e^{-} e^{+} \rightarrow$ virtual $\gamma \rightarrow \mu^{-} \mu^{+}$, so you can re-use the QED formula for summing/averaging over the spins, $c f$. my notes on Dirac traceology from the Fall semester, pages 10-13. But in QCD, you should also sum/average over the colors of all the quarks, and that's the whole point of this exercise.

